

PHP This! A Beginners Guide to Learning Object Oriented PHP, First Edition

Copyright © 2013 by Chad Collins (Pen Name: Michelle Gosney)

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner.

ISBN-13 (electronic): 9781456615291

Table of Contents

Introduction..6

Why Read This Book...6
 Sample Job Description: Jr. PHP Developer..7
 The Eight Primary Categories of JQuery Features ...
 Why Learn Object Oriented PHP ...7
 Six Primary Advantages to Learning Object Oriented Programming..7

Chapter 1: PHP Objects & Classes ... 9
 Overview – The Initial Confusion of First Learning Object Oriented Theory ...10
 Explanation of a Class ...10
 Explanation of an Object...10
 Instantiation .. 12
 $this Variable .. 12
 Access Modifiers .. 12
 Inheritance...14
 Method Overriding .. 15
 Invoking Parent Methods..16
 Horizontal Inheritance - Using Traits ..16
 Encapsulation .. 17
 Polymorphism ... 17
 Polymorphism vs. Method Overloading...18
 Polymorphism vs. Method Overriding ...18
 Late Binding / Dynamic Binding ..19

Chapter 2: PHP Magic Methods ...21
 __construct() ...22
 Invoking Parent Constructor and Destructor ..22
 __destruct() ...23

 __get(), __set(), __isset() ...23

 __call() ..25

 __sleep()... 26

 __wakeup()..27

 __clone()... 28

Chapter 3: Abstract Classes & Methods .. 30
 abstract Keyword ..31
 Extending sub-classes from an Abstract Base Class..32
 Abstract Methods ..33
 final Keyword .. 34

Chapter 4: Interfaces...35
 PHP Interfaces.. 36
 Explanation of What Interfaces Are and Why They are Useful ... 36
 interface & implements Keywords ... 36
 Implementing Multiple Interfaces... 36
 Programming to the Interface...37
 Design-by-Contract ... 39

Chapter 5: Static Methods & Properties.. 43
 The static Modifier... 44
 The Scope Resolution Operator ... 44
 Static Properties ..45
 Static Methods .. 48
 Singleton Pattern ...52
 Late Static Binding..53
 The static Keyword vs. the self Keyword ..53

 4

Chapter 6: PHP Error Control & Exception Handling ...55
 The Built-in Exception Class...56
 Throwing an Exception ...56
 The try-catch-finally Block ... 58
 Setting the Desired Error Sensitivity Level ..59
 Setting Error Reporting...59
 Error Reporting Sensitivity Levels..59
 Displaying Startup Errors.. 60
 Logging Errors.. 60
 Identifying the Log File.. 60
 Setting the Maximum Log Line Length .. 60
 Ignoring Repeated Errors.. 60
 Ignoring Errors Originating from the Same Location ... 60
 Storing Most Recent Error in a Variable ...61
 Opening the Logging Connection...61
 Logging Options...61
 Closing the Logging Connection... 62

Chapter 7: The Model, View, Controller Design Pattern ... 69

Understanding the Model-View-Controller Design Pattern .. 69
 Model ... 69
 View ... 69
 Controller .. 69
The MCV URL Structure & URL Mapping.. 69
 Using the .htaccess File .. 69
The index.php File .. 70
The MVC Folder Structure ... 70
Custom MVC Application - Restaurant Menu Management Application ... 70
 Showing the Menu ...75
 Adding a Menu Item... 82
 Assigning a Menu Item to a Menu ... 86
 Editing/Deleting Menu Items .. 90
Download the Source Code for the Custom MVC Application (Restaurant Menu Management Application) 94

Chapter 8: The Reflection API ..95
 Using the export Method ..97
 The Reflection Class ... 98

Chapter 9: The PEAR Library ...102
 Overview of PEAR ...103
 Install PEAR on a Zend Framework Environment on Windows ..103
 Install PEAR on a Windows XAMPP Environment ..105
 Install PEAR on a Windows WAMP Environment..106
 Install PEAR on a Mac OS...106
 Install PEAR on Linux...107
 PEAR CAPTCHA Example ..108

Chapter 10: Unit Testing with PHPUnit ... 112
 Overview of Unit Testing with PHPUnit .. 113
 Installing PHPUnit .. 113
 Install PHPUnit on Windows in Zend Framework Environment .. 113
 Install PHPUnit on Windows in XAMPP Environment.. 114
 Install PHPUnit on a Mac OS ... 114
 Install PHPUnit on Linux ... 114
 Test fixtures ... 114
 Test Phases... 115
 Writing Test Cases... 115
 Assertion Methods... 115
 Testing Data from HTML Form Submissions..120
 Test suites .. 121
 Mocks and Stubs.. 121
 TestCase Matcher Methods ...123

 5

 Running PHPUnit from Eclipse Without Plug-ins..124

Chapter 11: SVN - Source Code Management with Subversion ..126
 Windows .. 127
 Setting Up a Subversion Server and Client on Windows... 127
 Adding Your Source Code the First Time...130
 Creating a Copy to Work On ...130
 Updating and Committing Your Working Copy...130
 Setting up TortoiseSVN ... 131
 Trunk, Tags & Branches ..132
 Exporting a Release ...136
 Tagging & Branching a File ...136
 Mac OS X.. 137
 Setting Up a Subversion Server and Client on Mac OS X.. 137
 Download Subversion ... 137
 Unpack and Install Subversion .. 137
 Add Subversion to Your Path ... 137
 Setting up the Subversion Repository .. 137
 Creating a Subversion Project ... 137
 Checking Out Files from Subversion ..138
 Updating and Committing Changes ..138
 Adding and Removing Files and Directories..139
 Tagging & Exporting a Release ...140
 Branching & Merging a Project ...140
 Graphical User Interfaces..142
 Linux ..142
 Setting Up a Subversion Server on a Linux Server ..142
 Download Subversion ..142
 Setting up the Subversion Repository...142
 Creating a Subversion Project ...143
 Checking Out Files from Subversion ..144
 Updating and Committing Changes...144
 Adding and Removing Files and Directories ..145
 Tagging & Exporting a Release..146
 Branching & Merging a Project ... 147

Summary...149

Appendix A ..150
 Bibliography...150
 Books ..150
 Web Resources...150

Appendix B .. 151
 Setting Up Your Development Stack .. 151
 AMP, XAMP/WAMP, MAMP, LAMP.. 151
 Zend Server CE Download (MySQL, Apache, PHP, and ZendServer), System Requirements & Installation......... 151

MySQL Workbench 5.2 CE Download & Installation.. 155
 Setting Up Your Integrated Development Environment (IDE)..156
 Eclipse PDT (Helios Release) Download & Installation ...156

Index ... 159

 6

Introduction

A few years ago when I first sat down to evaluate the new features of PHP 5.3 I knew I was facing a challenging learning
curve. It had been about 9 years since I had used PHP and at that time it was an easy to use, loosely typed, scripting
language. My first thought while exploring the new features of PHP 5.3 was that “wow, little PHP is all grown up.”

In an effort to get caught up in a hurry, I looked at several books and on-line forums and quickly grew frustrated with the
same boring and monotonous way that these advanced concepts were explained and the poor examples that were used.
Having an extensive background in object-oriented programming I continuously thought to myself “what if someone is
trying to learn these concepts without much of an object-oriented background?”

The purpose of this book is to explain the advanced features and concepts of object-oriented PHP in a way that is simple
and easy to understand and in a fashion that will hopefully help you remember and apply what you have learned.

If you are preparing for a job interview and you expect questions about advanced features of PHP 5+ this book will help
you. In fact, you can be assured that most of the key concepts that are discussed in this book will come up in a job
interview. I endeavored to include a few other features that you may be quizzed on in an interview as well.

Why Read This Book

This book is intended for developers who are new to Object Oriented PHP and perhaps Object Oriented Programming in
general and are having difficulty grasping the new concepts. There are several reasons for reading this book beginning
with the job description below. This book will help you understand and remember Object Oriented concepts as applied to
PHP and give you a solid platform for continuous learning. If you ever find yourself in an interview for a job like the
description below you will know what you are talking about and how to answer the fundamental questions about PHP that
employers most likely will throw at you.

 7

Figure 1-1. Jr. PHP Developer Job Description

This book focuses on the advanced features of Object Oriented PHP which can be applied to advanced development
methods such as Extreme Programming, Design-by-Contract, Test Driven Development, Coding-to-the-Interface and
Agile development. During the course of this brief book many simple examples will be used to illustrate key concepts and
how they work. We will also build a small database driven application, a test harness for the application using PHPUnit,
and add version control of our source code using Subversion (SVN).

In reference to the Job Description above, this book doesn’t discuss JQuery or any other Javascript library. I do however
encourage you to get a good JQuery book. Javascript was practically useless ten years ago as a cross browser, client-side
development tool but has gained prominence and will continue to be pertinent for many years to come. When shopping
for a JQuery book, keep in mind that JQuery’s features are essentially broken down across eight major categories: Core
Functionality, DOM Selection & Traversal, DOM Manipulation & CSS, Events, Effects & Animations, AJAX, User Interface
and Extensibility through Plug-ins. It would be best to find a book that comprehensively covers each of these categories.

Why Learn Object Oriented PHP

There are several reasons to learn object-oriented programming. I will briefly touch on six primary advantages.

First of all, learning object-oriented programming, whether in PHP or any other OO-based language, will increase your
value as a programmer which ultimately means you can make more money and have more flexibility on where you work.

Secondly, object-oriented principles are consistent across all of the object-oriented based languages and platforms. Once
you have learned Object-Oriented PHP, grasping other languages will be much easier. Whether it is C#, Java, Visual Basic,

 8

Ruby on Rails or even C++, you will already know most of what you need to know. The syntax and semantics may differ
slightly from language to language but the way they all work is essentially the same.

A third advantage to learning Object-Oriented programming is scalability. Using OO-based PHP for a small project may
seem verbose and excessive when simple scripting can accomplish the same goal. However, if or when that small
application grows bigger and bigger and becomes more complex the time spent writing the base code in Object-Oriented
PHP will evidently prove to be a good investment.

A fourth advantage is that OO-based PHP creates re-usable blocks of code that can be used in your current project and in
future projects. You can eventually accumulate a reusable and robust code library.

The fifth advantage to using OO-based PHP is that it is much easier to have multiple programmers working on the same
project or code base because everything is segmented into objects. Various programmers can be assigned different objects
to work on without worrying about touching or breaking code in other parts of the same project. This is considering that
these objects are designed properly from the outset. It is this aspect of Object-Oriented PHP that makes PHP development
in an SCRUM/Agile environment possible and allows robust tools like SVN and PHPUnit to be used. Learning how to use
these tools in a team environment will certainly boost your value as a programmer.

The sixth reason for learning Object-Oriented PHP is that it allows you to leverage Object-Oriented based resources like
PHP frameworks such as Zend and libraries such as PEAR. Learning how to use these resources effectively can help you
build powerful applications faster and more efficiently. This is especially helpful if you are a freelance developer because
you can produce robust applications faster and balance multiple projects easier which mean more income.

 9

Chapter 1

PHP Objects & Classes

 10

Initial Confusion

The real problem in explaining object-oriented programming is that there is no absolute linear or sequential path to doing
so, the key concepts are all global. They say men are linear thinkers and women are global thinkers. Men tend to look for a
starting point and put things in sequential order, doing a single task at a time. Women are global thinkers in that they are
pervasive, considering the big picture. The fundamental concepts of object-oriented programming are global
in that way versus straight procedural programming which is clearly linear.

This is the benefit of OOP however it doesn't help in explaining it to someone who is new to it. Most teachers will start
with the 3 main advantages of OOP: encapsulation, inheritance and polymorphism and then elaborate on them.
This can be confusing.

PHP Objects & Classes

At this point I would explain what an object is but you can't have an object without a class function. A class is essentially a
blueprint for an object. It is a user-defined data type similar to a C-struct but more complex. A single instance of a class is
an "object.”

A class defines characteristics that an object will have called properties. Properties describe an object and can be assigned
values. For example, color is a property but “red” is a value assigned to color.

A class can also have member functions defined in them called methods. These functions manipulate the data values
assigned to the properties within the class and control the behavior of the object created from the class. For example, a
method can take a property value of an object, like the color of an object, and write it to the database, or visa versa.

Objects are at the very core of object-oriented programming so let me explain what an object is in the context of computer
programming. An object is simply data that is structured according to a user defined template that is
defined in a class function. Technically speaking, a class is a construct that defines constituent members and is used
to create instances of itself. Simply speaking, a class function is essentially just a blueprint that defines the characteristics
of an object, its properties, the way the object will behave, and its method functions. The properties describe and object
and the methods process the data assigned to these properties.

An object can be almost anything you can imagine, a bird, a table, a house or a person. If the object is a person, then some
common characteristics that can describe that person are name, gender, eye color, hair color, etc.

Before an object can exist it must have a class to define it. Our simple “Person” class will start off looking like this in PHP:

<?php

class Person

{

}

?>

This is as basic as it gets and all this does is define our class. At this point, our class is empty. It has no properties to
describe the objects that will be created from it nor any methods that will give its objects the ability to do things and
process data. Let’s add some basic characteristics that may describe a person as mentioned above:

class Person

{

 $name;

 $gender;

 $haircolor;

 $eyecolor;

}

 11

Here we defined some properties that help describe a person but we can’t do anything with these properties yet because
we don’t have any methods to set the value of these properties or any methods to get the values. Let’s add some “setter”
and “getter” functions to handle our properties. We will also add a method called __construct but we won’t do

anything with it at this time, that is, we won’t implement it at this time. We’ll talk about it in detail in Chapter 3 when we
cover PHP Magic Methods:

<?php

class Person

{

 $name;

 $gender;

 $haircolor;

 $eyecolor;

 function setName($name)

 {

 $this->name = $name;

}

function getName()

{

 return $this->name;

}

 function setGender($gender)

 {

 $this->gender = $gender;

}

function getGender()

{

 return $this->gender;

}

 function setHairColor($haircolor)

 {

 $this->haircolor = $haircolor;

}

function getHairColor()

{

 return $this->haircolor;

}

 function setEyeColor($eyecolor)

 {

 $this->eyecolor = $eyecolor;

}

function getEyeColor()

{

 return $this->eyecolor;

}

 function __construct(){}

}

?>

Now the Person class above contains some properties that describe a person and some methods to set and get that
information. Notice how the variable “$this” was used, we’ll get back to it shortly.

Now that we have a person class, let’s create some person objects from that class. Allow me to introduce some new friends,
Mindi and Billy, they can be two instances (two objects) of the Person class. To create Mindi and Billy, we must instantiate
them.

 12

Instantiation

Let’s start with the term “instantiate.” To instantiate a class means to create an object based on that class, or to create an
instance of that class. In PHP the way to do this is by using the new keyword like this:

$Mindi= new Person()

$Billy = new Person()

$Mindi and $Billy are now both instances (objects) of the class Person so their
properties can be assigned specific values. Notice how I used the parenthesis after
Person. This is because of the constructor I defined in the Person class, the first
function just after the properties are defined. This constructor is not implemented in
this example and I will explain this in detail in Chapter 3 when I discuss Magic
Methods.

Let’s start with Mindi. We all know about her tattoo but let’s officially set her name and
gender and some other attributes:

$Mindi->setName(‘Mindi’);

$Mindi->setGender(‘female’);

$Mindi->setHairColor(‘light brown’);

$Mindi->setEyeColor(‘blue’);

Now for Billy:

$Billy->setName(‘$Billy’);

$Billy ->setGender(‘male’);

$Billy ->setHairColor(‘brown);

$Billy ->setEyeColor(‘brown’);

$this Variable

 The $this variable is a pointer to the object making the function call. That may not mean much to you so let’s explain it as
it applies to Mindi. In the movie “Weird Science” two geeks created a metaphysical hot chic. That’s what we did when we
instantiated $Mindi. Her blueprint was the Person class. We gave her dazzling blue eyes with the following method:

$Mindi->setEyeColor(‘blue’);

That method is defined in the Person class like so:

public function setEyeColor($eyecolor)

{

 $this->eyecolor = $eyecolor;

}

So $this was replaces with $Mindi at the moment $Mindi was instantiated because $Mindi is a copy of the Person

class except with specific attributes instead of generic ones like $this. Hence the $Mindi object sees the

setEyeColor(‘blue’) method like this:

public function setEyeColor(‘blue’)

{

 $Mindi->eyecolor = ‘blue’;

}

Access Modifiers

Access Modifiers are keywords that control visibility of class properties and methods. In PHP there are three of them:

 13

1. Private
2. Protected
3. Public

Let’s describe Mindi in terms of her own class and let’s say that Mindi has a tattoo on her wrist. We could put it in PHP
terms like this:

class Mindi {

$tattoo_location;

function setLocation() { }

}

When we do it this way, the tattoo is public by default. That means it can be seen anywhere in the program.

It's the same as writing it as:

class Mindi {

 public $tattoo_location;

}

This means class Billy or class Alex or class Dad can all see Mindi's tattoo because it has public visibility which is set by a
public access modifier.

Now let's say Mindi instead has a tattoo that she doesn't want class mom or class dad to know about but wants to show off
to her friends. She has this tattoo on her back so she can display it wearing a bikini top.

class Mindi {

 protected $tattoo_location;

 protected function setLocation(){}

}

Now Mindi can wear her bikini top around her friends and not her mom or dad. We can describe this in PHP by extending
an invitation to the people she wants to show it to by using the extends key word:

class Billy extends Mindi {

 function viewTattoo(){}

}

class Alex extends Mindi....

class Anna extends Mindi....

class MathProfessor extends Mindi....

Since all of these classes extend class Mindi, they can see her tattoo. This is inheritance and all of these classes that extend
Mindi are part of her inheritance hierarchy.

Now let's say she has her tattoo in a more intimate place (use your imagination) and she only wants her boyfriend Billy to
see it and no one else. In PHP terms:

class Mindi {

private $tattoo_location;

private setLocation(){}

private letBillySee(){}

}

So to summarize the three PHP access Modifiers in a more formal way:

 14

private restricts the access to the class itself. Only methods that are part of the same class can access private members.
Let’s look at an example below:

class Student {

 private $name;

 public $age;

 public function __construct($name, $age) {

 $this->name = $name;

 $this->age = $age;

 }

}

$tmpStudent = new Student ("Mindi","22");

echo "Name : " . $ tmpStudent->name; //causes an error

The reason why data members are declared private is to avoid the outside programs to unintentionally modify the values
without necessary validation. If you make a data member private you should provide public getter/setter methods to
access the value of this data member. The access modifier protected allows the class itself and all of it’s subclasses to
access the data members and member functions. Global access is denied.

class Person {

 protected $name;

}

class Student extends Person {

 function setName($name) {

 //this works as $name is protected in Person

 $this->name = $name;

 }

}

$tmpStudent = new Student();

$tmpStudent->setName("Mindi");

$tmpStudent->name = "Mindi"; //this causes error as $name is protected and not public

public means that any code can access the member by its name.

class Student {

 private $name;

 public $age;

 public function __construct($name, $age) {

 $this->name = $name;

 $this->age = $age;

 }

}

$tmpStudent = new Student("Mindi","22");

echo "Age : " . $c->age; //prints 22

Now back to my previous point about object-oriented principles being “global” in the way a developer should think of
them. I used Mindi's tattoo to explain access modifiers but I also had to demonstrate encapsulation and inheritance in
order to do so.

Inheritance and Encapsulation are really just ways of regulating the ability of an object defined that is defined by a class.

Inheritance

Recall Mindi’s tattoos, specifically the tattoo on her back? The tattoo on her back was described as protected in PHP terms
meaning that it was visible within the Mindi class and to classes that extended the Mindi class. To inherit in PHP5, you
should use the keyword extends in the class definition.

class Parent

{

 15

}

class Child extends Parent

{

}

Inheritance passes "knowledge" down. It is a structured way of extending code and functionality into new programs and
packages. Classes are created in hierarchies and inheritance allows the structure and methods in one class to be passed
down the hierarchy. That means less programming is required when adding functions to complex systems. If a step is
added at the bottom of a hierarchy, then only the processing and data associated with that unique step needs to be added.
Everything else about that step is inherited. The ability to reuse existing objects is considered a major advantage of object
oriented programming.

Method Overriding

Method overriding is when the function of base class is re-defined with the same name, function signature and
access modifier (either public or protected) of the derived class.

The reason to override a method is to provide additional functionality over and above what has been defined in the base
class. Imagine that you have a class by the name of Beverage from which you derive two child classes, Martini and Scotch.
The Beverage class has methods defined to stir, mix, etc, but each of the specialized classes Martini and Scotch will have
its own style of mixing and stirring and hence would need to override the stir and mix functionality.

Lets look at an example with Beverage:

class Beverage {

 public function stir() {

 echo "Stir method of Beverage Class called";

 }

 public function mix() {

 echo "Mix method of Beverage Class called";

 }

}

class Martini extends Beverage {

 public function stir() {

 echo "Stir method of the Martini Class called";

 }

 public function mix() {

 echo "Mix method of Martini Class called";

 }

}

class VodkaTonic extends Beverage {

 public function stir() {

 echo "Stir method of the VodkaTonic Class called";

 }

 public function mix() {

 echo "Mix method of VodkaTonic Class called";

 }

}

$m = new Martini();

$s = new VodkaTonic();

$m->stir();

echo "\n";

$vt->stir();

Output:

Stir method of the Martini Class called

Stir method of the VodkaTonic Class called

 16

Invoking parent methods

First of all, “invoke” means to call, to request the action of something. I just wanted to get that brief explanation out of the
way. Now, when you override a method of the base class, its functionality is completely hidden unless it has been
explicitly invoked from the child class. To invoke a parent class method you should use the keyword parent followed by
the scope resolution operator “:: “ followed by the name of the method as mentioned below:
 parent::function_name();

Look at the example below:

class Person {

 public function showData() {

 echo "This is Person's showData()\n";

 }

}

class Employee extends Person{

 public function showData() {

 parent::showData();

 echo "This is Employee's showData()\n";

 }

}

$c = new Employee();

$c->showData();

Output:

This is Person’s showData()

This is Employee’s showData()

In the above example, look at the way in which the showData() function in the Employee child class is invoking the

Person parent class’s showData() function. When the program executes the showData() method if the Employee class

is called which in turn calls the showData() function of the parent class. After the parent class’s showData() function

completes its execution the remaining code in showData() function of the Employee class is executed.

Horizontal Inheritance – Using Traits

PHP does not support multiple inheritance; a class can only extend a single base class. What happens if you need code
from more than one class? Until recently, developers had to accomplish this in a crude manner by copying and pasting
code from additional classes that was needed outside of its base class. Now this can be done by way of a new feature
introduced in PHP5.4 called a trait that provides a means of horizontal inheritance.

A trait looks like a class in the way it is structured but it cannot be instantiated. Properties and methods can be defined

within a trait structure but they can only be used by a class that incorporates them with the use keyword which is called
within the class that uses it, that is, it goes inside the curly braces. It isn’t called in the class definition outside the curly
braces like interfaces and the extending class (we will get to interfaces in Chapter 5).

trait Math

{

 public function add($num1,$num2)

 {

 return $num1 + $num2;

 }

 public function multiply($num1, $num2)

 {

 return $num1 * $num2;

 }

}

 17

trait SalesTicket

{

 private $ticket = array();

 public function add($item)

 {

 array_push($this->ticket,$item);

 }

 public function getTicket()

 {

 return $this->ticket;

 }

}

class FoodOrder

{
 use Math,SalesTicket;

 {
 //Give priority to the add method from the Math trait

 Math::add insteadof SalesTicket;
 }

}

$order = new FoodOrder();

echo $order->add(5,7), "
";

Output:

12

Encapsulation

Encapsulation means what the term implies, to put in a “capsule,” to place functionality into a single package. Consider an
object as a capsule or a box that has things in it. The access modifiers are like windows that control who gets to see inside
with ‘public’ access being a wide open window that let's everyone see inside and ‘private’ access being fully shaded that
doesn't let anyone see inside.

The control over the visibility of the contents of an object is a big part of how encapsulation works.

The contents of an object are properties and methods and because they are all packaged inside an object they make up a
sort of mini-program that has control over how visible its contents, data, are. This is encapsulation.

Technically speaking, encapsulation refers to the creation of self-contained modules that bind processing functions to the
data. Encapsulation ensures good code modularity, which keeps routines separate and less prone to conflict with each
other. To reiterate, you can think of each object as a mini program that handles it’s own responsibilities as it’s own self
contained capsule or pill.

Polymorphism

Now that you know that a class is a blueprint and that an object is constructed based on that class it is important to
understand that many different objects can be created from the same class. I may have a single class for a table but I can
create many different kinds of table objects from that class. I could have a round table, a square table, a long table a short
table. I could have a blue table or a brown table. I could have a table made of oak or one made from plastic; all from the
same base class.

Polymorphism simply means many forms. In computer programming, polymorphism is the ability to create a
variable, a function, or an object that has more than one form in order to provide capability of adapting to what
needs to be done. It is a mechanism by which objects of different types can process data through a single interface.
Polymorphism is used to make applications more modular and extensible. Instead of messy, hard to read conditional

 18

statements describing different courses of action, you create interchangeable objects that you select based on what you
need. That is the fundamental goal of polymorphism.

Polymorphism is a mechanism by which objects of different types can process data through a single interface.

Using a typical illustrative example, a program might define a type of object called Animal, containing a function called
speak() and, through inheritance, derive object sub-types such as Cow, Dog, etc. that each have their own specific
implementation of the speak() function. The mechanism of polymorphism allows such a program to call the speak()
function without actually knowing whether it is calling it for a Cow, Dog, or any other derivative Animal, while executing
the correct function for the specific type of Animal.

Polymorphism is not the same as method overloading or method overriding (in OOP, a method is a function that belongs
to a class, while the class variables are referred to as its members) and should not be confused with these.

Method Overloading

Method overloading is where a class has two or more functions of the same name, but accepting a different number
and/or data types of parameters.

Method Overriding

Method overriding is where a child class (one derived through inheritance) defines a function with the same name and
parameters as a function in its parent class, but provides a different implementation of the function. This is not the same
as polymorphism, as it does not necessarily involve late-binding, however overriding is part of the mechanism by which
polymorphism is accomplished.

All this can sound confusing at first but a simple code example can help clarify:

 class Animal {

 protected $name;

 public function __construct($name)

 {

 $this->name = $name;

 }

 public function getName()

 {

 return $this->name;

 }

 }

 class Cow extends Animal

 {

 public function getName()

 {

 return 'Cow: '.parent::getName();

 }

 }

 $a = new Cow("Elsie Mae Mae");

 echo $a->getName();

This is an example of overriding. It is different from polymorphism because we are declaring a Cow and directly calling a
Cow function through Cow’s interface. However, PHP is a loosely-typed language, meaning that the vast majority of data
type handling is done implicitly by PHP, rather than the programmer. This means the difference between overriding and
polymorphism in PHP can appear rather subtle. Consider a slightly different example:

<?php

class Animal {

 protected $name;

 public function __construct($name)

 {

 19

 $this->name = $name;

 }

 public function getName()

 {

 return $this->name;

 }

 public function speak()

 {

 return $this->getName().' is speaking
';

 }

}

class Cow extends Animal

{

 public function getName()

 {

 return 'Cow: '.parent::getName();

 }

}

$a = new Cow("Elsie Mae Mae");

echo $a->speak();

$b = new Animal("something");

echo $b->speak();

?>

OUTPUT:

Cow: Elsie Mae Mae is speaking

something is speaking

Late Binding / Dynamic Binding

Late-binding (also known as dynamic binding) is the mechanism by which polymorphism is accomplished. In the example
above, the speak() function is defined in the base class, but makes a call to getName(), a polymorphic function that has
a specific implementation in each child class. Late-binding means that it is only at runtime, when the function is called,
that the specific data type is bound to the request. In simple terms, even though speak() is defined only in the generic

Animal class, it will call the child-specific implementation of getName(). This late-binding is a relatively new feature of
PHP and is what makes true polymorphism possible.

Another example:

class Animal {

 protected $name;

 public function __construct($name)

 {

 $this->name = $name;

 }

 public function getName()

 {

 return $this->name;

 }

}

class Cow extends Animal

{

 public function getName()

 {

 return 'Cow: '.parent::getName();

 }

}

function Name(Animal $a)

{

 echo $a->getName();

}

 20

$b = new Cow("Elsie Mae Mae");

Name($b);

This example is polymorphism, because the Name() function knows it is receiving an object of type Animal, but not

whether it is a Cow, Dog or whatever else. Notice how we have specified type Animal as a parameter for the Name()
function – specifying the data type of function parameters is normal and required in strongly-typed languages, but this
type hinting is optional in PHP. Specifying a type hint will cause PHP to generate a fatal error if you attempt to pass the
function a non-object, or object of a different type.

PHP is a dynamic programming language because it executes many common behaviors at run time that other languages
might perform at compile time. It is loosely typed, or dynamically typed, in that a majority of the type checking is
performed at run-time as opposed to being done at compile time. In dynamic typing values have types but variables do
not, that it, a variable can refer to any value of any type.

Chapter 2
Magic Methods

 22

The magic methods are reserved method names you can use in your classes to utilize special PHP functionality. Magic
methods provide access to special PHP behavior. The naming convention used for magic methods is a lower/camel-case
letters with two leading underscores.

 __construct()

The constructor is a magic method that gets called when the object is instantiated, that is, at the moment an instance a
class is created. It is usually the first thing in the class declaration but it does not need to be, it is a method like any other
and can be declared anywhere in the class. Recall when I mentioned the parenthesis after the Person class name when we
instantiated Mindi?

$Mindi = new Person();

The reference to the Person() class is the constructor for the $Mindi object. In this particular case the constructor is not
implemented because there is nothing inside the parenthesis. By this I mean we don’t initialize any of $Mindi’s properties
when we call the constructor. If we do not define a constructor function in our class then the PHP engine will assume that
we are using an unimplemented constructor, that is:

public function __contruct(){}

Constructors also inherit like any other method. So if we consider our previous inheritance example from the Introduction
to OOP, we could add a constructor to the Animal class like this:

// animal.php

class Animal

{

 public function __construct() {

 $this->created = time();

$this->logfile_handle = fopen('/path/to/log.txt', 'w');

 }

}

Now we can create a class which inherits from the Animal class. Without adding anything into the Cow class, we can
declare it and have it inherit from Animal, like this:

class Cow extends Animal {

}

$milky = new Cow();

echo $milky->created;

If we define a __construct method in the Cow class, then Cow objects will run that instead when they are instantiated.
Since there isn’t one, PHP looks to the parent class definition for information and uses that. So we can override, or not, in
our new class – very handy.

Invoking parent Constructor and Destructor

We can get the parent PHP5 constructor and PHP5 Destructor to be invoked in the same way as invoking the parent
method, refer to the example below:

class Person{

 public function __construct() {

 echo "This is Person's __construct()\n";

 }

 public function __destruct() {

 echo "This is Person's __destruct()\n";

 23

 }

}

class Employee extends Person{

 public function __construct() {

 parent::__construct();

 echo "This is Employee's __construct()\n";

 }

 public function __destruct() {

 parent::__destruct();

 echo "This is Employee's __destruct()\n";

 }

}

$c = new Employee();

Output:

This is Person’s __construct()

This is Employee’s __construct()

This is Person’s __destruct()

This is Employee’s __destruct()

__destruct()

Did you spot the file handle that was also part of the constructor? We don’t really want to leave things like that lying
around when we finish using an object and so the __destruct method does the opposite of the constructor. It gets run
when the object is destroyed, either expressly by us or when we’re not using it any more and PHP cleans it up for us. For
the Animal, our __destruct method might look something like this:

class Animal{

 public function __construct() {

 $this->created = time();

 $this->logfile_handle = fopen('/path/to/log.txt', 'w');

 }

 public function __destruct() {

 fclose($this->logfile_handle);

 }

}

__get(), __set(), __isset()

The setting and retrieval process of values of properties within a class that have no a explicit declaration comprises what's
known as property overloading in PHP. The __set() function will be called automatically by the PHP engine each time a

script attempts to assign a value to a property of a class that hasn't been explicitly declared. The __get() function will be

invoked transparently when a script tries to retrieve the value of an undeclared class property. The __isset() function is
also invoked when it is called on an undefined property. The purpose of __isset() is to test a property before working
with it.

“User” example 1

Say that there's a basic class called "User," which represents, through software, a real-world user. The definition of this
sample class would be something like this:

class User {

private $firstname = 'John';

private $lastname = 'Doe';

private $email = 'janedoe@somedomain.com';

 24

// constructor (not implemented)

public function __construct(){}

// set user's first name

public function setFirstName($firstname)

{

$this->firstname = $firstname;

}

// get user's first name

public function getFirstName()

{

return $this->firstname;

}

// set user's last name

public function setLastName($lastname)

{

$this->lastname = $lastname;

}

// get user's last name

public function getLastName()

{

return $this->lastname;

}

// set user's email address

public function setEmail($email)

{

$this->email = $email;

}

// get user's email address

public function getEmail()

{

return $this->email;

}

}

As you can see, the structure of the above "User" class is pretty easy to follow. It's only composed of a few setters and
getters, used for setting and retrieving the values assigned to its three declared properties, that is $firstname,

$lastname and $email respectively.

So far, nothing strange is happening here, right? What follows is a simple demonstration of how to use this class:

$user = new User();

$user->setFirstName('John');

$user->setLastName('Doe');

$user->setEmail('john@domain.com');

// display user data

echo 'First Name: ' . $user->getFirstName() . '
 Last Name: ' . $user->getLastName() . '
 Email: ' .

$user->getEmail();

/*

displays the following:

First Name: John

Last Name: Doe

Email: john@domain.com

“User” example 2

In the previous example, I created a basic "User" class, whose API allowed us to easily assign and retrieve the values of its
declared properties. However, as I expressed earlier, it's possible to shorten its definition and make it more "dynamic"
simply by concretely implementing the "__set()" and "__get()" methods.

To demonstrate this concept a bit more, I'm going to redefine this sample class to allow us not only to create new class
properties at run time, but retrieve their respective values with extreme ease.

Now that you know what I'm going to do in the next few lines, please examine the modified version of the "User" class. It
now looks like this:

 25

class User

{

// constructor (not implemented)

public function _construct(){}

// set undeclared property

function __set($property, $value)

{

$this->$property = $value;

}

// get defined property

function __get($property)

{

if (isset($this->$property))

{

return $this->$property;

}

}

}

In the first case, the "__set()" function will create an undeclared property and assign a value to it, while in the last case, its
counterpart "__get()" will retrieve this value if the property has been previously set.

The implementation of these two methods permits us to overload properties in a very simple way. It also makes the class's
source code much shorter and more compact. The down side to this is that this process has some disadvantages that must
be taken into account. First, and most importantly, the lack of an explicit declaration for each property of the class makes
the code harder to read and follow. Second, it's practically impossible for an IDE like Eclipse PDT to keep track of those
properties for either commenting or documenting them.

// example of usage of 'User' class with property overloading

$user = new User();

$user->firstname = 'Jane';

$user->lastname = 'Doe';

$user->email = 'janedoe@mydomain.com';

$user->address = 'My address 1111';

// display user data

echo 'First Name: ' . $user->firstname . ' Last Name: ' . $user->lastname . '
 Email: ' . $user->email .

'
Address: ' . $user->address;

OUTPUT:

First Name: Jane

Last Name: Doe

Email: janedoe@mydomain.com

Address: My address 1111

__call()

If a class implements __call(), then if an object of that class is called with a method that doesn't exist __call() is used
instead as a substitute. For example:

<?php

//This class demonstrate how the __call() Magic Method is used

class CallTest {

 private $v = array(1, 7, 9);

 public function __call($method, $args) {

 echo "The method \"$method\" was called.\n";

 var_dump($args);

 return $this->v;

 26

 }

}

//test() doesn’t exist

$example = new CallTest();

$a = $example->test('f', 'o', 'o');

var_dump($a);

?>

OUTPUT:

The method "test" was called.

array(3) {

 [0]=>

 string(1) "f"

 [1]=>

 string(1) "o"

 [2]=>

 string(1) "o"

}

array(3) {

 [0]=>

 int(1)

 [1]=>

 int(7)

 [2]=>

 int(9)

}

Now let’s add a method called test() and run it again. Notice that this time test() was called instead of __call():

<?php

//This class demonstrate how the __call() Magic Method is used

class CallTest {

 private $v = array(1, 7, 9);

 public function __call($method, $args) {

 echo "The method \"$method\" was called.\n";

 var_dump($args);

 return $this->v;

 }

 public function test($args) {
 echo "The method \"test\" exists now!\n";

 return NULL;
 }

}

//test() doesn’t exist

$example = new CallTest();

$a = $example->test('f', 'o', 'o');

var_dump($a);

?>

OUTPUT:

The method "test" exists now!

NULL

__sleep()

The __sleep() magic method is called when the object of a class is about to be serialized. Serialization is the process
of converting an object into a linear sequence of bytes for storage or transmission to another location over a network. This
magic method __sleep() does not accept any parameter and returns an array. The array should contain a list of class
members that should be serialized. This means that if you don’t wish to serialize a particular class member, you should not
include it in the array. Look at the example below:

class Employee {

 27

 private $fname;

 private $date_of_birth;

 public function setFirstName($fname) {

 $this->fname = $fname;

 }

 public function getFirstName() {

 return $this->fname;

 }

 public function setBirthDate($dob) {

 $this->date_of_birth = $dob;

 }

 public function getBirthDate() {

 return $this->date_of_birth;

 }

 public function __sleep() {

 return array("fname"); //because of this, only name is serialized

 }

}

$e = new Employee();

$e->setFirstName("Marsha");

$e->setBirthDate("09-12-1983");

$data = serialize($e)."\n";

echo $data."\n";

Output:
O:8:”Employee”:1:{s:15:” Employee fname”;s:6:”Marsha”;}

In the above example, you can see that the serialized string data only contains the fname of the Employee Object. This is
because the __sleep() magic method returned an array containing only the ‘fname’ data member.

__wakeup()

The __wakeup() magic method is the opposite of the __sleep() method and does not accept any parameter nor
returns anything. It is responsible for setup operations after an object has been unserialized. Unserialized is the opposite
of serialize which means to convert an array into a normal string that you can save in a file, pass in a URL, etc. To
unserialize means to take a serialized string and convert it back to an array. The PHP functions Serialize() and

Unserialize() are used to perform these operations. Look at the example below:

class Employee {

 private $fname;

 private $date_of_birth;

 public function setFirstName($fname) {

 $this->fname = $fname;

 }

 public function getFirstName() {

 return $this->fname;

 }

 public function setBirthDate($dob) {

 $this->date_of_birth = $dob;

 }

 public function getBirthDate() {

 return $this->date_of_birth;

 }

 public function __sleep() {

 28

 return array("fname");

 }

 public function __wakeup() {

 if($this->fname == "Marsha") {

 $this->date_of_birth = "09-12-1983";

 }

 }

}

$e = new Employee();

$e->setFirstName("Marsha");

$e->setBirthDate("09-12-1983");

$data = serialize($e)."\n";

var_dump(unserialize($data));

OUTPUT:

object(Employee)#2 (2) {

 ["fname:private"]=>

 string(6) "Marsha"

 ["date_of_birth:private"]=>

 string(10) "09-12-1983"

}

In the above example, you can see that after the $e object has been serialized, that is converted to a common string, and
the output stored in $data variable, we use the $data variable and pass it to the unserialize(). Before the object is

unserialized and object created, the __wakeup() method is called.

__clone()

In PHP, objects are always assigned and passed around by reference. Let me explain with a simple example:

 Class CopyClass

 {

 public $name;

 }

 $first = new CopyClass();

 $first->name="Number 1";

 $second = $first;

 echo "first = " . $first->name . "

";

 $second->name="Number 2";

 echo "first = " . $first->name . "
";

 echo "second = " . $second->name . "
";

 OUTPUT:

 first = Number 1

 first = Number 2

 second = Number 2

 Notice that the value of the $first->name property changed from “Number 1” to “Number 2” after I made a copy of

the $first object called $second and set the value of $second->name=”Number 2.” This is because both the $first
and $second objects actually refer to the same object, the $second object was assigned by reference.

 The __clone() magic method can be used to make a copy of an object that doesn’t refer to the object being copied but

instead creates a new and completely distinct object. Let me demonstrate how __clone() works by using it in the

previous example instead of setting $second = $first.

Class CopyClass

{

 29

 public $name;

}

$first = new CopyClass();

$first->name="Number 1";

$second = clone $first;

echo "first = " . $first->name . "

";

$second->name="Number 2";

echo "first = " . $first->name . "
";

echo "second = " . $second->name . "
";

OUTPUT:

first = Number 1

first = Number 1

second = Number 2

This time the value of the $first->name did not change after we set a value for $second->name. That is because clone
allowed us to make a copy of first that is a totally different object. Hence, now we have two objects not just two references
to the same object like we had before.

 30

Chapter 3

Abstract Classes & Methods

 31

An integral part of polymorphism is the common interface. The common interface is a point of interaction
between components. There are two ways to define a common interface in PHP: interfaces and abstract
classes. Both have their uses, and you can mix and match them as you see fit in your class hierarchy.

There is more than one way to explain these features. Some prefer to describe the abstract class as a mix of the
interface and the class. I would rather defer discussion about the PHP interface to Chapter 5 and explain the
abstract class first.

The abstract class in PHP is a generic class that used solely as a base class, that is, an abstract class cannot ever
be instantiated. An abstract class is a platform that is used to build more specific classes through inheritance. In
other words, the methods and properties of the abstract class are implemented in the sub classes that inherit
from the abstract class. You can’t create an object from an abstract class but all of it’s methods and properties
have to be used by objects created from the classes that are based on the abstract class.

Before I confuse you any further, let’s talk a little more about Mindi and her friend Vallery. The girls love to
flaunt their stuff at the beach with their sexy but expensive swimwear.
Who’d have ever thought that such little clothing costs so much? Mind and Vallery are going to need jobs to
maintain their flashy looks so let’s help them out and give the girls jobs as waitresses.

It’s a big help as a waiter or waitress to have good looks however looks aren’t everything and any good waiter or
waitress needs to ultimately know their menu. Let’s go a step further and help the girls out by building a menu
for them so they can do their job, make some money, buy those new bikinis and get back on the beach! Since a
menu is comprised of menu items, let’s start with the menu items.

Now since we want to give the girls flexibility on where they work and the type of food they serve, we want to
create the ability to make any kind of menu that they’ll need. We need to start off by being as generic or
abstract as possible.

abstract Keyword

An abstract class or method is declared using the abstract keyword. To give us the most flexibility so that we
can create as many kinds of menus and menuitems that we want we need to start with an abstract Menu class.

abstract class Menu

{

}

Well, we have an abstract class for our menu items but it doesn’t do us any good because we don’t have anything
in it. Now let’s think this through, for Mindi and Vallery’s sake. Let’s assume that there will be a database
eventually so it follows that we will need a unique identifier for each of our menus and each of our menu items.
There are several ways to do this but let’s design our menu generator so that we have a general list of menu items
that can be used on one or more menus (Lunch Menu, Dinner Menu, etc.). This implies a one-to-many entity
relationship where there is one menuitemid to many menuids. Hence, the menu class will need a menuitemid
field too. Let’s also add name and description fields as well.

abstract class Menu

{

 private $menuid;

private $menuitemid;

 private $menuname;

 32

 private $description;

 public function setMenuID($menuid){$this->menuid = $menuid;}

 public function getMenuID(){return $this->menuid;}

 public function setMenuItemID($menuitemid){$this-> menuitemid = $ menuitemid;}

 public function getMenuItemID(){return $this-> menuitemid;}

 public function setMenuName($menuname){$this->menuname = $menuname;}

 public function getMenuName(){return $this->menuname;}

 public function setDescription($description){$this->description= $description;}

 public function getDescription(){return $this->description;}

}

It’s probably best that we don’t make the MenuItem class abstract because if we are going to make a general list,
or table, of menu items that all have the same common structure we will want to instantiate the MenuItem class.
Let’s give it some basic properties that we know each individual menu item will need, a unique ID, a name,
description, price, serving size and a link to a picture. Let’s also give it some methods for setting and getting the
values of these properties.

class MenuItem

{

private $menuitemid;

private $itemname;

private $description;

private $price;

private $servingsize;

private $picture;

 public function setID($menuitemid){$this-> menuitemid = $ menuitemid;}

 public function getID(){return $this-> menuitemid;}

 public function setPrice($price){$this->price = $price;}

 public function getPrice(){return $this->price;}

 public function setPicture($picture){$this->picture = $ picture;}

 public function getPicture (){return $this->picture;}

 public function setItemName($itemname){$this->itemname = $itemname;}

 public function getItemName(){return $this->itemname;}

 public function setDescription($description){$this->description= $description;}

 public function getDescription(){return $this->description;}

 public function setServingSize($servingsize){$this->servingsize = $servingsize;}

 public function getServingSize(){return $this->servingsize;}

}

Now that we have our base menu class, let’s build some specific menu classes that we will instantiate our actual
menu objects from.

class MainMenu extends Menu

{

//...

}

class DrinkMenu extends Menu

{

//...

}

class LunchMenu extends Menu

{

//...

}

class KidsMenu extends Menu

{

 33

//...

}

class DessertMenu extends Menu

{

//...

}

Let’s examine the last two menu classes, the KidsMenu and DessertMenu classes. We probably don’t want to leave
these two classes open for extension by creating sub classes that can inherit from them, there is no need to. The
Dessert Menu is usually the last thing anyone views when they are at a restaurant and the Kids Menu is self-
explanatory. Just to save Mindi and Vallery any possible future confusion let’s put a cap on the extensibility of
these classes by making them final. We do this with the final keyword.

Abstract Methods

Recall from Chapter 2 in the discussion about polymorphism that you were introduced to the concept of Method
Overriding. Well, Abstract methods are methods that must be overridden because they cannot be invoked directly. If you
attempt to call an abstract method you will get an error. Abstract methods must be declared within an abstract class. If you
declare an abstract method inside a non-abstract class this will cause a compile error.

In the following example we have an abstract class called Dog that has an abstract method called bark():

<?php

abstract class Dog {

 private $name = null;

 private $gender = null;

 public function __construct($name) {

 $this->name = $name;

 }

 public function getName() {return $this->name;}

 public function setName($name) {$this->name = $name;}

 abstract public function bark();

}

// Override the abstract bark() method of the abstract Dog class

class Rottweiler extends Dog {

 public function bark() {

 echo "WOOOF!! WOOOF! WOOOF!" . "
";

 }

}

class Chihuahua extends Dog {

 public function bark() {

 echo "yip! yip! yip!" . "
";

 }

}

// This class causes a compilation error, because it fails to implement bark().

class Mutt extends Dog {

 // this will cause an error because this dog didn't override bark()

}

?>

OUTPUT:

 34

Fatal error: Class Dog contains 1 abstract method and must therefore be declared abstract or implement the

remaining methods (Dog::bark)

final Keyword

final Class KidsMenu extends Menu

{

//...

}

final Class DessertMenu extends Menu

{

//...

}

Inheritance allows for great flexibility within a class hierarchy. A class or a method can be overridden so that a
call in a client method will achieve different effects according to which class instance it has been passed.
Sometimes, like in the case of our Kids Menu and Dessert Menu, a class or a method should remain
unchangeable. The final keyword stops inheritance. A final class cannot have sub-classes, or child classes and
final methods cannot be overridden.

 35

Chapter 4

PHP Interfaces

 36

Interfaces are pure templates. The purpose of the interface is to give you flexibility by having your class be forced
to implement multiple interfaces but still not allow multiple inheritance. As you recall from Chapter 2, there is
no multiple inheritance in PHP. An interface acts as a contract in that any class that incorporates an interface
commits to implementing all of the methods it defines. In other words, any classes implementing an interface
must implement all methods defined by the interface.

PHP is a “loosely-typed” language, classes take on the type of the interface it implements as well as any class that
it extends.

The use of interfaces allows a programming style called “programming to the interface.” The idea behind this is
to base programming logic on the interfaces of the objects used rather than on internal implementation details.
Programming to the interface reduces dependency on implementation specifics and makes code more reusable.
It gives the programmer the ability to later change the behavior of the system by simply swapping the object
used with another implementing the same interface.

An interface is similar to a class except that it cannot contain code. An interface can define method names and
arguments, but not the contents of the methods. A class can implement multiple interfaces.

interface & implements Keywords

An interface is declared using the interface keyword and it is implemented using the keyword implements.

interface MyInterface {

}

class MyClass implements MyInterface {

}

Methods can be defined in the interface just like in a class, except without the body (the part between the
braces).

interface MyInterface1 {

public function doSomething();

}

interface MyInterface2 {

 public function doSomethingElse();

}

interface MyInterface3 {

public function setName($name);

}

Multiple interfaces can be implemented by listing them separated with commas. All methods defined here will
need to be included in any implementing classes exactly as described.

// VALID

class MyClass implements MyInterface1, MyInterface2, MyInterface3 {

 protected $name;

 public function doSomething() {

 // code that does something

 }

 public function doSomethingElse() {

 // code that does something else

 }

 public function setName($name) {

 $this->name = $name;

 }

}

// INVALID

class MyClass implements MyInterface1, MyInterface2, MyInterface3 {

 // missing doSomething()!

 private function doSomethingElse() {

 37

 // this should be public!

 }

 public function setName() {

 // missing the name argument!

 }

}

If you have experience with C# this should be familiar to you. If not then you are probably wondering what is
this good for? Recall when I stated that interfaces allow for a programming style called “programming to the
interface” and that a PHP interface serves as a type of “contract?” Well you will most likely in your career
encounter software architectural design methods that are domain driven, or use a design methodology called
design-by-contract. The purpose for this type of design methodology is to make software code segments as
modular and loosely-coupled as possible to minimize dependency between code segments. This makes it much
easier for multiple developers to work on a single project without stepping on each others toes and causing
conflicts in the software. This reduces the hassle of making code changes on a big project while reducing the risk
of breaking down stream code in other places in the project. It also makes unit testing easier to accomplish so
that classes can be tested by themselves as independent mini-programs.

To show first hand how the PHP interface is helpful, let’s continue on with our restaurant menu application.
Recall that we developed a MenuItem class:

class MenuItem

{

private $menuitemid;

private $itemname;

private $description;

private $price;

private $servingsize;

private $picture;

 public function setID($menuitemid){$this-> menuitemid = $ menuitemid;}

 public function getID(){return $this-> menuitemid;}

 public function setPrice($price){$this->price = $price;}

 public function getPrice(){return $this->price;}

 public function setPicture($picture){$this->picture = $ picture;}

 public function getPicture (){return $this->picture;}

 public function setItemName($itemname){$this->itemname = $itemname;}

 public function getItemName(){return $this->itemname;}

 public function setDescription($description){$this->description= $description;}

 public function getDescription(){return $this->description;}

 public function setServingSize($servingsize){$this->servingsize = $servingsize;}

 public function getServingSize(){return $this->servingsize;}

}

We created an abstract Menu class:

abstract class Menu

{

 private $menuid;

 private $parentid;

private $menuitemid;

 private $menuname;

 private $description;

 public function setMenuID($menuid){$this->menuid = $menuid;}

 public function getMenuID(){return $this->menuid;}

 public function setParent($parentid){$this->parentid = $parentid;}

 public function getParent(){return $this->parentid;}

 public function setMenuItemID($menuitemid){$this-> menuitemid = $ menuitemid;}

 public function getMenuItemID(){return $this-> menuitemid;}

 public function setMenuName($menuname){$this->menuname = $menuname;}

 public function getMenuName(){return $this->menuname;}

 38

 public function setDescription($description){$this->description= $description;}

 public function getDescription(){return $this->description;}

}

We then created some classes that extended our Menu class:

class MainMenu extends Menu

{

//...

}

class DrinkMenu extends Menu

{

//...

}

class LunchMenu extends Menu

{

//...

}

final class DinnerMenu extends LunchMenu

{

//...

}

final class KidsMenu extends Menu

{

//...

}

final class DessertMenu extends Menu

{

//...

}

Now here is where Mindi and Vallery run into a dilemma. The Lunch Menu and the Dinner Menu have many of
the same menu items but the serving sizes and prices should be different at dinner than they are at lunch. We
can solve this by creating some interfaces that will ensure that dinner will be served up and priced up differently
than lunch.

Now we can use the same menu for dinner that we use for lunch except we will adjust the serving sizes and
prices for our dinner menu. We could start by extending our lunch menu to our dinner menu:

class DinnerMenu extends LunchMenu

{

//...

}

The next thing we need to do is to create the interfaces we need to force us to set up some business rules that will
price and portion dinner items differently than lunch items. Let’s go ahead and create an interface for Happy
Hour too while we’re at it.

interface DinnerPortion {

 public function setDinnerPortion();

}

interface DinnerPrices {

 public function setDinnerPrices();

}

interface HappyHourDrinkPrices {

 public function setHappyHourDrinkPrices();

 39

}

Now let’s put it all together:

final class DinnerMenu extends LunchMenu implements DinnerPortion, DinnerPrices

{

 public function setDinnerPortion($menuitemObject)

{

 $adjusted_servingsize = 1;

$base_servingsize = $menuitemObject->getServingSize();

//Make the dinner portion 50% bigger than the lunch portion.

 $adjusted_servingsize = $base_servingsize * 1.5;

 return $adjusted_servingsize;

}

public function setDinnerPrices($menuitemObject)

{

 $adjusted_price = 1;

$base_price = $menuitemObject->getPrice();

//Make the dinner price 25% more than the lunch price.

 $adjusted_price = $base_price * 1.25;

 return $adjusted_price;

}

}

We’ll implement the HappyHourDrinkPrices interface on our DrinkMenu.

final class HappyHourMenu extends DrinkMenu implements HappyHourDrinkPrices

{

 public function setHappyHourDrinkPrices($drinkObject)

{

 $adjusted_price = 1;

$base_price = $drinkObject->getPrice();

//Make the happy hour drink prices 30% less than regular price

 $adjusted_price = $base_price * 0.7;

 return $adjusted_price;

}

}

The PHP interface is ultimately a mechanism to enforce discipline. Not only is it important to understand the
interface as a contract but it is also important to understand it’s use as a language construct by thinking of them as
means of classifying common traits or behaviors that were exhibited by potentially many non-related classes of
objects. Let me attempt to drive this point home and demonstrate what it means to program to the interface with
another example. This time let’s say that we are building a game application where a driver drives down a scary
road and it equally threatened by two completely different things.

For example:

 class GrizzlyBear extends Animal {

 public function GrowlAtYou(){}

 public function ChaseYou(){}

 public function PounceOnYourCar(){}

 40

 public function EatYou(){}

 }

 class Cop extends Person {

 public function FollowYou(){}

 public function PullYouOver(){}

 public function ArrestYou(){}

 public function BeatYouSenseless(){}

 }

Clearly, these two objects have nothing in common in terms of direct inheritance. But, you could say they are both
threatening.

Let's say our game needs to have some sort of random thing that threatens the game player when they driving
down a scary road. This could be a GrizzlyBear or a Cop or both, but how do you allow for both with a single
function? And how do you ask each different type of object to "do their threatening thing" in the same way?

The key to realize is that both a GrizzlyBear and Cop share a common loosely interpreted behavior even though
they are nothing alike in terms of modeling them. So, let's make an interface that both can implement:

 interface IThreat {
 public function BeThreatening();

 }

class GrizzlyBear extends Animal implements IThreat {

 function GrowlAtYou() { echo "Growwwwwwl!!"; }

 function ChaseYou(){}

 function PounceOnYourCar(){}

 function EatYou(){}

 function BeThreatening() {

 GrowlAtYou();

 ChaseYou();

 PounceOnYourCar();

 }

 }

 class Cop extends Person implements IThreat {

 function FollowYou(){}

 function PullYouOver(){}

 function ArrestYou(){}

 function BeatYouSenseless(){}

 function BeThreatening() {

 FollowYou();

 PullYouOver();

 ArrestYou();

 }

 }

We now have two classes that can each be threatening in their own way. And they do not need to derive from the
same base class and share common inherent characteristics, they simply need to satisfy the contract of IThreat.
That contract is simple, you just have to BeThreatening. In this regard, we can model the following:

class ScaryRoad {

 public function __construct() {}

 public function DriveCar(array $threatening_object) {

 //While driving down a scary road

 foreach ($threatening_object as $threat)

 {

 $threat->BeThreatening();

 }

 }

 }

 41

//$cop1 = new Cop();

$cop1 = new Cop();

$grizzly1 = new GrizzlyBear();

$grizzly2 = new GrizzlyBear();

$road = new ScaryRoad();

$road->DriveCar($threats=array($cop1, $grizzly1, $grizzly2));

Here we have a scary road with a DriveCar() function that accepts a number of threats. Observe the use of the
interface. This means that in our scenario, a member of the threats array could actually be a GrizzlyBear object or
a Cop object.

The DriveCar method is called when a driver is driving down a scary road. In our application, that's when our
threats do their work. Each threat is instructed to be threatening by way of the IThreat interface. In this way, we
can easily have both GrizzlyBears and Cops be threatening in each of their own ways. We care only that we have
something in the ScaryRoad object that is a threat, we don't really care what it is and they could have nothing in
common with other.

Let’s look at a similar example:

 class AttractiveStranger extends Person {

 public function LookAtYou(){}

 public function SmileAtYou(){}

 public function TalkToYou(){}

 }

 class Pepper extends Vegetable {

 public function BurnYourTongue(){}

 public function CauseBathroomEmergency(){}

 }

Clearly, these two objects have nothing in common in terms of direct inheritance. But, you could say they both
make you sweat.

Let's say our game needs to have some sort of random thing that makes our game player sweat when they are at a
bar. This could be a AttractiveStranger or a Pepper or both, but how do you allow for both with a single function?
And how do you ask each different type of object to "do their thing that makes you sweat" in the same way?

The key to realize is that both a AttractiveStranger and Pepper share a common loosely interpreted behavior even
though they are nothing alike in terms of modeling them. So, let's make an interface that both can implement:

 interface ISweat {

 function MakeYouSweat();

 }

 class AttractiveStranger extends Person implements ISweat {

 public function LookAtYou(){}

 public function SmileAtYou(){}

 public function TalkToYou(){}

 public function MakeYouSweat() {

 LookAtYou();

 SmileAtYou();

 TalkToYou();

 }

 }

 class Pepper extends Vegetable implements ISweat {

 public function BurnYourTongue();

 public function CauseBathroomEmergency();

 public function MakeYouSweat() {

 BurnYourTongue();

 CauseBathroomEmergency();

 }

 }

 42

We now have two classes that can each make you sweat in their own way. And they do not need to derive from the
same base class and share common inherent characteristics -- they simply need to satisfy the contract of ISweat.
In this regard, we can model the following:

class CollegeBar implements ISweat{

__construct()

{

 $attractivestranger = new AttractiveStranger();

 $hotpepper = new Pepper();

 $thing1 = $attractivestranger->MakeYouSweat();

 $thing2 = $hotpepper-> MakeYouSweat();

 $thingsThatMakeYouSweat = array($thing1, $thing2)

 SitAtBar($thingsThatMakeYouSweat);

}

 void SitAtBar() {

 // when you are sitting at the bar

 foreach ($thingsThatMakeYouSweat as $value)

 { . . .)

 }

 }

Here we have a college bar that accepts a number of people and a number of thingsThatMakeYouSweat. Observe
the use of the interface. This means that in our scenario, a member of the thingsThatMakeYouSweat array could
actually be a AttractiveStranger object or a Pepper object.

The SitAtBar method is called when a person is sitting at a bar. In our application, that's when our
thingsThatMakeYouSweat do their work. Each thingsThatMakeYouSweat is instructed to make the person at the
bar sweat by way of the ISweat interface. In this way, we can easily have both AttractiveStrangers and Peppers be
threatening in each of their own ways. We care only that we have something in the CollegBar object that is a
thingThatMakesYouSweat, we don't really care what it is and they could have nothing in common with other.

I hope that this helps to make the need and use of the PHP interface clear and also helps to explain what it really
means to "program-to-the-interface."

 43

Chapter 5

The static Modifier

 44

The dictionary defines the work ‘static’ as pertaining to or characterized by a fixed or stationary condition, showing little

or no change. The use of the word ‘static’ in Object-Oriented PHP means the same in that static properties and methods

are never used in a dynamic way. Static properties and methods are defined in a class but are never encapsulated in

objects that derived from that class. Let me repeat that, static properties and methods are accessible, if they are public,

anywhere in the program without having to create an object from the class the static properties and methods are declared

in. The static keyword is convenient for creating class-level utility methods and for sharing data between objects of the

same type.

The use of the static keyword can be the source of confusion if you are learning about it for the first time. Some common

questions that people have at first are: Are static properties the same as global variables? What is the difference between

self and static keyword in static method? How do you call static properties and methods? Can you extend static methods?

What are some practical uses for static properties and variables? These are all good questions and I will answer all of them

through the course of this brief chapter. First, let me demonstrate how a static property compares to a dynamic property of

an instantiated class. Let’s revisit our Person class and create a new friend for Mindi and Vallery:

$tmpPerson = new Person();

$tmpPerson->Name = "Marsha";

We just created a new girl named Marsha by creating an instance of the Person class called Marsha. We then set a value to
the ‘Name’ property of the tmpPerson object equal to “Marsha.” Now, with the introduction of the static keyword in PHP,
we can access methods and properties through the context of a class rather than only the object (note: these
methods/properties need to be declared static first), that is, we can access the Name property without creating an object.
For example:

class Person {

 static public $Name = "Marsha";

 static public function helloWorld() {

 print "Hello world from " . self::$Name;

 }

}

To declare a method or property as static, we must use the static keyword. When accessing properties from outside the
class scope, we use the class name followed by two colons (::) and then the property name. The use of the twin colons is
called the Scope Resolution OperatorScope Resolution OperatorScope Resolution OperatorScope Resolution Operator. For instance:

print Person::$Name . "\n";

Person::helloWorld();

Output:

Marsha

Hello world from Marsha

You should be able to see in the example above that you use the self keyword to access member variables or properties

from inside a class.

 45

As static methods are within the class scope, they cannot access any normal methods or properties (i.e. those that have not

been declared static), as those would belong to the object, and not the class. A result of this is you cannot use the $this

variable from within a static method because static methods are not invoked in the context of an object. Instead you would

use self.

Let’s get back to our restaurant menu application and add some static properties and methods that will be useful. Recall

that we extended our abstract Menu class to create some specific menu classes. Let’s add a static property to each of these

classes to set the title that will be printed when we generate those specific menus. We will also employ static methods in a

Database class that we will add to our application.

Static Properties

Look below in the MainMenu, DrinkMenu, LunchMenu, KidsMenu, DessertMenu, DinnerMenu, and
HappyHourMenu classes. Let’s add a static public property called $title. This static property will allows
us to set the text to be used as the heading for our menus without creating the menu objects:

<?php

class MenuItem

{

 private $menuitemid;

 private $itemname;

 private $description;

 private $picture;

 private $servingsize;

 private $price;

 public function setID($menuitemid){$this-> menuitemid = $menuitemid;}

 public function getID(){return $this-> menuitemid;}

 public function setPrice($price){$this->price = $price;}

 public function getPrice(){return $this->price;}

 public function setPicture($picture){$this->picture = $picture;}

 public function getPicture (){return $this->picture;}

 public function setItemName($itemname){$this->itemname = $itemname;}

 public function getItemName(){return $this->itemname;}

 public function setDescription($description){$this->description= $description;}

 public function getDescription(){return $this->description;}

 public function setServingSize($servingsize){$this->servingsize = $servingsize;}

 public function getServingSize(){return $this->servingsize;}

}

abstract class Menu

{

 private $menuid;

 private $menuitemid;

 private $menuname;

 private $description;

 public function setMenuID($menuid){$this->menuid = $menuid;}

 public function getMenuID(){return $this->menuid;}

 public function setMenuItemID($menuitemid){$this-> menuitemid = $menuitemid;}

 public function getMenuItemID(){return $this-> menuitemid;}

 public function setMenuName($menuname){$this->menuname = $menuname;}

 public function getMenuName(){return $this->menuname;}

 public function setDescription($description){$this->description= $description;}

 public function getDescription(){return $this->description;}

}

class MainMenu extends Menu

 46

{

 static public $title="Main Menu";

}

class DrinkMenu extends Menu

{

 static public $title="Drink Menu";

}

class LunchMenu extends Menu

{

 static public $title="Lunch Menu";

}

Class KidsMenu extends Menu

{

 static public $title="Kids Menu";

}

Class DessertMenu extends Menu

{

 static public $title="Dessert Menu";

}

interface DinnerPortion {

 public function setDinnerPortion($itemobject);

}

interface DinnerPrices {

 public function setDinnerPrices($itemobject);

}

interface HappyHourDrinkPrices {

 public function setHappyHourDrinkPrices($itemobject);

}

final class HappyHourMenu extends DrinkMenu implements HappyHourDrinkPrices

{

 static public $title="Happy Hour Drink Menu";

 public function setHappyHourDrinkPrices($menuitemObject)

 {

 $adjusted_price = 1;

 $base_price = $menuitemObject->getPrice();

 //Make the dinner price 30% less than the normal price.

 $adjusted_price = ($base_price * 0.7);

 return round($adjusted_price,2);

 }

}

final class DinnerMenu extends LunchMenu implements DinnerPortion, DinnerPrices

{

 static public $title="Dinner Menu";

 public function setDinnerPortion($menuitemObject)

 {

 $adjusted_servingsize = 1;

 $base_servingsize = $menuitemObject->getServingSize();

 //Make the dinner portion 50% bigger than the lunch portion.

 $adjusted_servingsize = $base_servingsize * 1.5;

 return $adjusted_servingsize;

 }

 public function setDinnerPrices($menuitemObject)

 {

 $adjusted_price = 1;

 $base_price = $menuitemObject->getPrice();

 47

 //Make the dinner price 25% more than the lunch price.

 $adjusted_price = ($base_price * 1.25);

 return round($adjusted_price,2);

 }

}

Now let’s apply the concepts we discussed in Chapters 2, 4, 5 and this chapter with a simple test. Remember that
our Dinner Menu is extended from our Lunch Menu and that we implemented the DinnerPrices interface to make
a distinction between the lunch prices and dinner prices. Also notice in the last segment of the following test code
that I adjusted the title for the Dinner Menu, that is, I changed the static public $title property without
creating an object to do it.

//Test

//Create Test Menu Item object

$tmpMenuItem = new MenuItem();

$tmpMenuItem->setItemName('Atlantic Yellow Fin Tuna');

$tmpMenuItem->setPrice('14.75');

echo LunchMenu::$title . "
";

echo $tmpMenuItem->getItemName() . ' - $' . $tmpMenuItem->getPrice();

echo "

";

//Use the setDinnerPrice method we implemented in the DinnerMenu

// class that was declared in the DinnerPrices interface

$tmpDinnerMenu = new DinnerMenu();

echo DinnerMenu::$title . "
";
echo $tmpMenuItem->getItemName() . ' - $' . $tmpDinnerMenu->setDinnerPrices($tmpMenuItem);

echo "

";

// Change the Title by changing the static $title variable in the DinnerMenu class.

DinnerMenu::$title="<i>Dinner</i>";

echo DinnerMenu::$title . "
";

echo $tmpMenuItem->getItemName() . ' - $' . $tmpDinnerMenu->setDinnerPrices($tmpMenuItem);

echo "

";

?>

OUTPUT:

Figure 6-1. Eclipse PDT Debug Output

Simplicity is often the best solution and answer to complex problems. In my experience I have encountered
developers who will intentionally convolute their code into a big spaghetti mess intentionally for the sole purpose
of making it hard for someone else to figure out. They of course do this in an attempt to make themselves more
valuable and to assure job security. Let me assure you, if you learn this material and continue to develop your
knowledge into design patterns and advanced software architecture, you will never have to pull that kind of stunt.
Your value will be ‘encapsulated’ in your ability to understand a business model and requirements and react by
developing from scratch, not from guarding some aging application like some troll.

With that said, let’s discuss static methods. Static methods can be called directly from a class, not an object, just
the same as static properties. As mentioned previously in this chapter, a common question surrounding the static
modifier is what are static methods and properties good for? What are their practical uses?

 48

For one, a database connection would be a good use for a static function. You don’t need direct access to an entire DB
object, you just need access to the connection resource. So you can call

$result = StaticClass::getDatabaseConnection()->query();

But if you need access to the class for storage later or multiple instances of the same object, then you would not want to go
static.
Your class also now lives in a global scope, so you can access it from any class, in any scope, anywhere in your code base.

function getUsers()

{

 $users = StaticClass::getDatabaseConnection()->query('SELECT * FROM users');

}

Example: Use static methods to create instances of an object which might perhaps take different arguments.

Class DBConnection

{

 public static function createFromConfiguration(Configuration $config)

 {

 $conn = new DBConnection();

 $conn->setDsn($config->getDBDsn());

 $conn->setUser($config->getDBUser());

 $conn->setPassword($config->getDBPass());

 return $conn;

 }

 public static function newConnection($dsn, $user, $password)

 {

 $conn = new DBConnection();

 $conn->setDsn($dsn);

 $conn->setUser($user);

 $conn->setPassword($password);

 return $conn;

 }

}

In the case of our restaurant menu application, we’re going to need a database so let’s create one with the
following schema and then let’s create a Database class to handle all of our database communication. I prefer to
use MySQL Workbench Community Edition to perform my database administration. The most recent release is
version 5.2. You can download and install MySQL Workbench for free at
http://dev.mysql.com/downloads/workbench/

Once you have MySQL WB 5.2 CE installed you will want to create a new connection by clicking on the “New
Connection” link to open the Setup New Connection wizard and create a “localhost” connection.

 49

Figure 6-2. MySQL Workbench 5.2 CE Workbench Control Panel

CREATE DATABASE `restaurant` /*!40100 DEFAULT CHARACTER SET utf8 */

CREATE TABLE `menuitem` (

 `menuitemid` int(11) NOT NULL AUTO_INCREMENT,

 `parentid` int(11) NOT NULL,

 `itemname` varchar(255) NOT NULL,

 `description` varchar(255) DEFAULT NULL,

 `servingsize` varchar(255) DEFAULT NULL,

 `picture` varchar(255) DEFAULT NULL,

 `price` varchar(45) NOT NULL,

 PRIMARY KEY (`menuitemid`),

 UNIQUE KEY `menuitemid_UNIQUE` (`menuitemid`)

) ENGINE=MyISAM AUTO_INCREMENT=17 DEFAULT CHARSET=utf8$$

CREATE TABLE `menuitemtomenu` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `menuitemid` int(11) NOT NULL,

 `menuid` int(11) NOT NULL,

 PRIMARY KEY (`id`,`menuitemid`,`menuid`),

 UNIQUE KEY `idmenuitemtomenu_UNIQUE` (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8$$

 50

Figure 6-3. MySQL Workbench 5.2 CE RestuarantMenuManager.sql File

<?php

//Database.php

require_once(‘config.php’);

class Database

{

 public $connection;

 private function Database()

 {

 $databaseName = $GLOBALS[‘configuration’][‘db’];

 $serverName = $GLOBALS[‘configuration’][‘host’];

 $databaseUser = $GLOBALS[‘configuration’][‘user’];

 $databasePassword = $GLOBALS[‘configuration’][‘pass’];

 $databasePort = $GLOBALS[‘configuration’][‘port’];

 $this->connection = mysql_connect ($serverName.”:”.$databasePort, $databaseUser,

$databasePassword);

 mysql_set_charset(‘latin1’,$this->connection);

 if ($this->connection)

 {

 if (!mysql_select_db ($databaseName))

 {

 throw new Exception(‘Cannot find: “’ . $databaseName . ‘”’);

 }

 }

 else

 {

 throw new Exception(‘Cannot connect to the database.’);

 }

 }

 public static function Connect()

 {

 static $database = null;

 if (!isset($database))

 {

 $database = new Database();

 }

 return $database->connection;

 }

 public static function Reader($query, $connection)

 51

 {

 $cursor = mysql_query($query, $connection);

 return $cursor;

 }

 public static function Read($cursor)

 {

 return mysql_fetch_assoc($cursor);

 }

 public static function Query($query, $connection)

 {

 $result = mysql_query($query, $connection);

 return mysql_num_rows($result);

 }

 public static function InsertOrUpdate($query, $connection)

 {

 $result = mysql_query($query, $connection);

 return intval(mysql_insert_id($connection));

 }

}

?>

At this point, let’s “refactor” the menuitem class and give it the essence of abstraction without actually making it
abstract by using the __set(), __get() and __isset() Magic Methods from Chapter 3.

Class MenuItem
{

 // constructor (not implemented)
 public function _construct(){}

 // set undeclared property

 function __set($property, $value)
 {

 $this->$property = $value;
 }

 // get defined property
 function __get($property)

 {
 if (isset($this->$property))

 {
 return $this->$property;

 }
 }

}

The MenuItem class is now cleaner and more flexible and will work smoothly with the restaurant database schema
from above. Notice that we do not need a Menu table, only a MenuItem table and a bridge table called
MenuItemToMenu that relates a specific menu to a menuitem. This design allows for a unique menuitem to be
used on multiple menus and if you will recall from Chapter 4, the use of interfaces allows us to vary the prices and
servingsizes of the menuitems in response to the particular menus that uses the menuitem. We will come back to
this restaurant menu application in Chapter 7 where add exception handling capability as we put everything
together.

Another good practical use of static methods and properties is to employ the Singleton design pattern.
The Singleton pattern is a design pattern that restricts the instantiation of a class to one object.

Singletons are useful in several ways. Primarily, Singletons are used often as a more preferred method of making
data available across an application as an alternative to global variables. There are several reasons for this. For
one, a class that relies on global variables becomes cumbersome to reuse from one application to another without
first ensuring that the new application defines the same global variables. A second reason is that global variables
will usually consume resources where a class that uses the Singleton pattern permits lazy allocation and
initialization. A third reason that Singletons are preferred over globals is that globals clutter the global namespace,
or the containing namespace in PHP5.3+. We will discuss the namespace feature in Chapter 8.

 52

The Singleton pattern is also used to implement the Abstract Factory, Builder, Prototype and Façade design
patterns. Design patterns are beyond the scope of this book but I have included several useful references for
design patterns in the Appendix. I highly recommend reviewing these references as design patterns are an integral
part of software development.

The singleton pattern is implemented by creating a class with a method that creates a new instance of the class if
one does not exist. If an instance already exists, it simply returns a reference to that object. To make sure that the
object cannot be instantiated any other way, the constructor is made private. Also note observe that the
$instance property is set to private static. In this example class, the $instance property will hold and
return the instance of the Singleton object.

Singleton:

class SingletonClass {

 private static $instance;

 private function __construct() { }

 public function __clone() {

 trigger_error(‘Clone is not allowed.’, E_USER_ERROR);

 }

 public static function init() {

 if (!isset(self::$instance)) {

 $c = __CLASS__;

 self::$instance = new $c;

 }

 return self::$instance;

 }

 // other public, dynamic methods for singleton

}

$singleton = SingletonClass::init();

Design patterns are beyond the scope of this book however I have provided some references in the Appendix that I highly
recommend reviewing. This next example of how static properties and methods can be useful is to track the number of
objects or instances of a class. This example extremely rudimentary, all it does is increment the public static property

$instance every time the class constructor is called at the time of instantiation. Likewise it decrements $instance

every time the destructor is called. This is possible because public static $instance persists in the context of the

ountInstancesOfMyself class, not in the objects created from that class. It is in this way, and in the way we used our

public static $title variables in the menu classes of our restaurant application that public static properties are
used in a ‘global variable’ type fashion.

Class CountInstancesOfMyself {

 public static $instances = 0;

 public function __construct() {

 CountInstancesOfMyself::$instances++;

 }

 public function __destruct() {

 CountInstancesOfMyself::$instances--;

 }

}

$a = new CountInstancesOfMyself();

$b = new CountInstancesOfMyself();

$c = new CountInstancesOfMyself();

echo CountMe::$instances;

Output:

3

 53

Late Static Binding

Late Static Binding describes a feature available in PHP 5.3 which can be used to reference the called class in a context of

static inheritance. Ultimately, late static binding can be explained in these simple terms: the static keyword vs. the

self keyword.

Both keywords are similar except self resolves to the containing class and static resolves to the invoked class.

Allow me to explain with a simple example. Say we have an empty house or apartment and we want to put some things in
it. Let’s model the stuff we want to put in our empty place as an abstract HouseholdObject and create some sub classes to
give us the basic things our bachelor pad needs:

Abstract class HouseholdObject{

}

class Couch extends HouseholdObject {

 Public static function create() {

 return new Couch();

 }

}

class FlatScreenTV extends HouseholdObject {

 Public static function create() {

 return new FlatScreenTV ();

 }

}

class Refrigerator extends HouseholdObject {

 Public static function create() {

 return new Refrigerator ();

 }

}

Since the create() function is common to all of the classes that are extended from the HouseholdObject base class, it

is more practical to move the create() function into the base class and then extend it to the sub classes so we only have

to type it once. Notice in the create() function that we are using the self() keyword as a reference to the class:

Abstract class HouseholdObject{

 Public static function create() {

 return new self();

 }

}

class Couch extends HouseholdObject {

}

class Table extends HouseholdObject {

}

class Refrigerator extends HouseholdObject {

 54

}

The problem with returning self() as a reference to the class is that when the create() function is called by the sub
classes, using the scope resolution operator, we get an error:

Couch::create();

Table::create();

Output:

Fatal error: Cannot instantiate abstract class HouseholdObject

This is because we used the self keyword and it refers to the base class, the abstract HouseholdObject class. When the
create() function is extended to the Couch, Table and Refrigerator classes and we call it to create a Couch or Table or
Refrigerator it tries to create a HouseholdObject instead. The create() function is not referring to the class that is calling it,
or invoking it, it is referring to the abstract class instead. As you hopefully recall, an abstract class cannot be instantiated,
so the PHP engine throws an error.

Now, using late static binding let’s try this again except this time the create() function will return a static reference.

This static reference will refer to the class which will be calling the create() function, not the base class

HouseholdObject:

Abstract class HouseholdObject{

 Public static function create() {

 Return new static();

 }

}

Class Couch extends HouseholdObject {

}

Class Table extends HouseholdObject {

}

Class Refrigerator extends HouseholdObject {

}

 55

Chapter 6

PHP Error Control & Exception Handling

 56

The topic of exception and error handling may be the least exciting topic of this book yet it is the one that may be the most
critical because it can save your ass as a developer if you give it the attention it deserves. Errors are going to occur, they are
inevitable. Chance however favors the prepared mind and as a developer if you give careful consideration to the problems
that will most likely occur, you will have a much improved chance of releasing successful software. Incorporating useful
tools like javascript form validation will help to prevent user induced errors. Developing your code to handle predicted
errors and exceptions will help you to prevent an all out disaster. The release of PHP 5 has included some advantageous
exception handling ability in addition to the PHP error reporting and configuration directives. We will review this
exception handling ability first.

Numerous configuration directives determine PHP’s error-reporting behavior. I will go ahead and discuss several of these
last. If you find yourself getting bored then at least remember what they are and where they are in this book so you can
reference them when you need them.

The Built in Exception Class

In PHP 5+ an exception is a special object that is instantiated from PHP’s Exception class or any class that extends the

PHP Exception class. The purpose of objects that are of type Exception are to contain and report information about
errors. The constructor of the Exception class optionally accepts two arguments, a message string and an error code. The
Exception class contains several public methods that are beneficial in evaluating error situations. I will quickly introduce
the Exception class then I will provide an example of each methods use.

<?php

class Exception

{

 protected $message = ‘Unknown exception’; // exception message

 private $string; // __toString cache

 protected $code = 0; // user defined exception code

 protected $file; // source filename of exception

 protected $line; // source line of exception

 private $trace; // backtrace

 private $previous; // previous exception if nested exception

 public function __construct($message = null, $code = 0, Exception $previous = null);

 final private function __clone(); // Inhibits cloning of exceptions.

 Final public function getMessage(); // Gets the message string that was passed to the constructor

 final public function getCode(); // Gets the error code that was passed to the constructor

 final public function getFile(); // Gets the source filename

 final public function getLine(); // Gets the source line

 final public function getTrace(); // Gets a multidimensional array of the backtrace()

 final public function getPrevious(); // Gets previous exception

 final public function getTraceAsString(); // Gets a formatted string of the data returned by trace

 /* Overrideable */

 public function __toString(); // formatted string for display

}

?>

Let’s first reference the Database class that we developed for our restaurant menu application to interact with the
database. Notice that we use the Exception class to print a custom message when connection attempt to the database fails
either because the database with the name we specified in the configuration file is not found or it cannot connect because
some other connection credential was wrong, which is also set in the configuration file.

Throwing an Exception

<?php

//Database.php

require_once(‘config.php’);

class Database

{

 public $connection;

 private function Database()

 {

 57

 $databaseName = $GLOBALS[‘configuration’][‘db’];

 $serverName = $GLOBALS[‘configuration’][‘host’];

 $databaseUser = $GLOBALS[‘configuration’][‘user’];

 $databasePassword = $GLOBALS[‘configuration’][‘pass’];

 $databasePort = $GLOBALS[‘configuration’][‘port’];

 $this->connection = mysql_connect ($serverName.”:”.$databasePort, $databaseUser,

$databasePassword);

 mysql_set_charset(‘latin1’,$this->connection);

 if ($this->connection)
 {

 if (!mysql_select_db ($databaseName))
 {

 throw new Exception(‘I cannot find the specified database “’.$databaseName.’”.
Please edit configuration.php.’);

 }
 }

 else
 {

 throw new Exception(‘I cannot connect to the database. Please edit configuration.php with
your database configuration.’);

 }

 }

 public static function Connect()

 {

 static $database = null;

 if (!isset($database))

 {

 $database = new Database();

 }

 return $database->connection;

 }

 public static function Reader($query, $connection)

 {

 $cursor = mysql_query($query, $connection);

 return $cursor;

 }

 public static function Read($cursor)

 {

 return mysql_fetch_assoc($cursor);

 }

 public static function NonQuery($query, $connection)

 {

 mysql_query($query, $connection);

 $result = mysql_affected_rows($connection);

 if ($result == -1)

 {

 return false;

 }

 return $result;

 }

 public static function Query($query, $connection)

 {

 $result = mysql_query($query, $connection);

 return mysql_num_rows($result);

 }

 public static function InsertOrUpdate($query, $connection)

 {

 $result = mysql_query($query, $connection);

 return intval(mysql_insert_id($connection));

 }

}

 58

Figure 7-1. Try-Throw-Catch

Typically you will set up your exception handling in your code within the construct of a try-catch block. The code that you
intend to execute will reside inside a try block and the code that handles exceptions to normal execution of your code

will go in the catch block. The try and catch keywords are called marker clauses and they define the scope of the

exception handler. The unique aspect of the catch block is that it accepts an Exception object as an input argument
that allows you to use the methods in the Exception class as you can see below:

class MyClass

{

 public function doSomething()

 {

//...

 try

 {

 // try something

 }

 catch (Exception $e)

 {

 // handle/report exception

 }

 }

}

Now let’s add a finally block to facilitate the output of the example function below and let’s add one more feature to this

construct called throw which will initiate the exception:

class MyClass

{

 public function doSomething()

 {

 $filename = '/path/to/test.txt';

 try

 {

 if !(file_exists($filename))

 {

 throw new Exception("file does not exist.");

 }

 }

 catch (Exception $e)

 {

 echo "Exception caught: " . $e->getMessage() . “<\ br>”;

 echo "Exception code: " . $e->getCode() . “<\ br>”;

 }

 finally

 {

 //create the file if it doesn't exist.

 $handle = fopen($filename, 'w');

 59

 fclose($handle);

 }

 }

}

Setting the Desired Error Sensitivity Level

Pay strict attention to the following! The following code example shows you how to set your error reporting. Insert these
two lines at the top of your code body. The second line is called the error_reporting directive. The
error_reporting directive determines the reporting sensitivity level.

<?php

ini_set('display_errors',1);

error_reporting(E_ALL);

//code body ...

?>

Another way to do it is to edit your php.ini file and include this option:

error_reporting = E_ALL

To turn error reporting off for a single document, include this line:

error_reporting(0);

Fourteen separate levels are available, and any combination of these levels is valid. See the following table for a complete
list of these levels. Note that each level is inclusive of all levels residing below it. For example, the E_ALL level reports any
messages resulting from the 13 other levels residing below it in the table.

Error Reporting Sensitivity Levels:

Error Level Description

E_ALL All errors and warnings

E_COMPILE_ERROR Fatal compile-time errors

E_COMPILE_WARNING Compile-time warnings

E_CORE_ERROR Fatal errors that occur during PHP’s initial start

E_CORE_WARNING Warnings that occur during PHP’s initial start

E_ERROR Fatal run-time errors

E_NOTICE Run-time notices

E_PARSE Compile-time parse errors

E_RECOVERABLE_ERROR Near-fatal errors (introduced in PHP 5.2)

E_STRICT PHP version portability suggestions (introduced in PHP 5.0)

E_USER_ERROR User-generated errors

E_USER_NOTICE User-generated notices

E_USER_WARNING User-generated warnings

E_WARNING Run-time warnings

Table 7-1. PHP’s Error-Reporting Sensitivity Levels

Introduced in PHP 5, E_STRICT suggests code changes based on the core developers’ determinations as to proper coding
methodologies and is intended to ensure portability across PHP versions. If you use deprecated functions or syntax, use

references incorrectly, use var rather than a scope level for class fields, or introduce other stylistic discrepancies,
E_STRICT calls it to your attention.

 60

Be aware that in PHP 6 you will need to set the error_reporting to E_ALL in order to view the user-generated

warnings because E_STRICT is integrated into E_ALL.

In order to report all errors, which is handy during the development phase, consider setting the directive like this:

error_reporting = E_ALL

At times when you are only concerned about fatal run-time, parse, and core errors., you could use logical operators to set
the directive as follows:

error_reporting E_ERROR | E_PARSE | E_CORE_ERROR

Now in order to set reporting on all errors except for user-generated ones, you would do the following:

error_reporting E_ALL & ~(E_USER_ERROR | E_USER_WARNING | E_USER_NOTICE)

Also not that the error_reporting directive uses the tilde character (~) to represent the logical operator NOT.

Displaying Startup Errors

Enabling the display_startup_errors directive will display any errors encountered during the initialization of the PHP
engine. Like display_errors, you should have this directive enabled during testing and disabled when the site is live.

Logging Errors

Errors should be logged in every instance because such records provide the most valuable means for determining
problems specific to your application and the PHP engine. Therefore, you should keep log_errors enabled at all times.
Exactly to where these log statements are recorded depends on the error_log directive.

Identifying the Log File

Errors can be sent to the system syslog or can be sent to a file specified by the administrator via the error_log directive.

If this directive is set to syslog, error statements will be sent to the syslog on Linux or to the event log on Windows.

If you’re unfamiliar with the syslog, it’s a Linux-based logging facility that offers an API for logging messages pertinent to
system and application execution. The Windows event log is essentially the equivalent of the Linux syslog. These logs are
commonly viewed using the Event Viewer.

Setting the Maximum Log Line Length

The log_errors_max_len directive sets the maximum length, in bytes, of each logged item. The default is 1,024 bytes.
Setting this directive to 0 means that there is no maximum length set.

Ignoring Repeated Errors

Enabling ignore_repeated_errors causes PHP to disregard repeated error messages that occur within the same file
and on the same line.

Ignoring Errors Originating from the Same Location

Enabling ignore_repeated_source causes PHP to disregard repeated error messages emanating from different files
or different lines within the same file.

Storing Most Recent Error in a Variable

 61

Enabling track_errors causes PHP to store the most recent error message in the variable $php_errormsg. Once
registered, you can do as you please with the variable data, including output it, save it to a database, or do any other task
suiting a variable.

If you’ve decided to log your errors to a separate text file, the Web server process owner must have adequate permissions
to write to this file. In addition, be sure to place this file outside of the document root to lessen the likelihood that an
attacker could happen across it and potentially uncover some information that is useful for surreptitiously entering your
server.

The define_syslog_variables()function initializes the constants necessary for using the

openlog(),closelog(), and syslog()functions. Its prototype follows:

void define_syslog_variables(void)

You need to execute this function before using any of the following logging functions.

Opening the Logging Connection

The openlog()function opens a connection to the platform’s system logger and sets the stage for the insertion of one or
more messages into the system log by designating several parameters that will be used within the log context. Its prototype
follows:

int openlog(string ident, int option, int facility)

Several parameters are supported, including the following:

ident: Identifies messages. It is added to the beginning of each entry. Typically this value is
set to the name of the program. Therefore, you might want to identify PHP-related messages such as “PHP” or “PHP5.”

option: Determines which logging options are used when generating the message. A list of available options is offered in
Table 8-2. If more than one option is required, separate each option with a vertical bar. For example, you could specify
three of the options like so:

LOG_ODELAY | LOG_PERROR| LOG_PID.

facility: Helps determine what category of program is logging the message. There are several categories, including

LOG_KERN,LOG_USER,LOG_MAIL,LOG_DAEMON,LOG_AUTH,LOG_LPR, and LOG_LOCALN, where N is a value ranging
between 0 and 7. Note that the designated facility determines the message destination. For example, designating
LOG_CRON results in the submission of subsequent messages to the cronlog, whereas designating LOG_USER results in

the transmission of messages to the messages file. Unless PHP is being used as a command-line interpreter, you’ll likely

want to set this to LOG_USER. It’s common to use LOG_CRON when executing PHP scripts from a crontab. See the syslog
documentation for more information about this matter.

Logging Options

Option Description

LOG_CONS If an error occurs when writing to the syslog, send output to the system console.

LOG_NDELAY Immediately open the connection to the syslog.

LOG_ODELAY Do not open the connection until the first message has been submitted for logging. This is

the default.

LOG_PERROR Output the logged message to both the syslog and standard error.

LOG_PID Accompany each message with the process ID (PID).

Table 7-2. Error Logging Options

Closing the Logging Connection

 62

The closelog()function closes the connection opened by openlog(). Its prototype follows:

int closelog(void)

The syslog()function is responsible for sending a custom message to the syslog. Its prototype follows:

int syslog(int priority, string message)

The first parameter, priority, specifies the syslog priority level, presented in order of severity here:

LOG_EMERG: A serious system problem, likely signaling a crash

LOG_ALERT: A condition that must be immediately resolved to avert jeopardizing system integrity

LOG_CRIT: A critical error, which could render a service unusable but does not necessarily place the system in
danger

LOG_ERR: A general error

LOG_WARNING: A general warning

LOG_NOTICE: A normal but notable condition

LOG_INFO: A general informational message

LOG_DEBUG: Information that is typically only relevant when debugging an application

The second parameter, message, specifies the text of the message that you’d like to log. If you’d like to log the error

message as provided by the PHP engine, you can include the string %min the message. This string will be replaced by the

error message string (strerror) as offered by the engine at execution time.

Now that you’ve been acquainted with the relevant functions, here’s an example:

<?php
 define_syslog_variables();
 openlog("CHP7", LOG_USER);
 syslog(LOG_WARNING,"Chapter 7 example warning.");
 closelog();
?>

Referring back to our restaurant menu application, let’s tie everything together and adding some exception handling code
to the rest of the application. We already have a separate file called Database.php that contains our Database class which
of course handles the interaction between the “restaurant” database and the rest of the application. The rest of the
applications code is segregated into different files that divide the application between three main parts that can be
described as, the “Model,” the “View” and the “Controller.”

The code that constitutes the “Model” is in MenuModel.php. This file contains all the classes that define the models for all
of the specific menu objects that we want (i.e.: DrinkMenu, KidsMenu, DinnerMenu, etc.), the abstract menu class which
is the base class for the specific menu classes and the menuitem class:

<?php
//MenuModel.php

require_once(‘/path/to/Database.php’);

class MenuItem
{
 // constructor (not implemented)
 public function _construct(){}

 // set undeclared property

 63

 function __set($property, $value)
 {
 $this->$property = $value;
 }

 // get defined property
 function __get($property)
 {
 if (isset($this->$property))
 {
 return $this->$property;
 }
 }
}

abstract class Menu
{
 private $menuid;
 private $parentid;
 private $menuitemid;
 private $menuname;
 private $description;

 public function setMenuID($menuid){$this->menuid = $menuid;}
 public function getMenuID(){return $this->menuid;}

 public function setMenuItemID($menuitemid){$this-> menuitemid = $menuitemid;}
 public function getMenuItemID(){return $this-> menuitemid;}

 public function setMenuName($menuname){$this->menuname = $menuname;}
 public function getMenuName(){return $this->menuname;}

 public function setDescription($description){$this->description= $description;}
 public function getDescription(){return $this->description;}

 function getAllMenuItems($menuid)
 {
 $connection = Database::Connect();
 $this->query = "select mitm.*, mi.itemname, mi.description,
 mi.price, mi.picture, mi.servingsize
 from `menuitemtomenu`
 as mitm left join `menuitem`
 as mi on mitm.menuitemid = mi.menuitemid
 where mitm.menuid = $menuid";

 $menuitemList = Array();
 $cursor = Database::Reader($this->query, $connection);
 while ($row = Database::Read($cursor))
 {
 $menuitem = new MenuItem;
 $menuitem->menuitemid = $row['menuitemid'];
 $menuitem->itemname = $row['itemname'];
 $menuitem->price = $row['price'];
 $menuitem->servingsize = $row['servingsize'];
 $menuitem->description = $row['description'];
 $menuitemList[] = $menuitem;
 }
 return $menuitemList;
 }

}

class MainMenu extends Menu
{
 static public $title="Main Menu";
 const id = 1;

 static public function menutime()
 {
 return time();
 }
}

class DrinkMenu extends Menu
{
 static public $title = "Drink Menu";
 const id = 2;
}

class LunchMenu extends Menu
{
 static public $title="Lunch Menu";
 const id = 3;
}

class KidsMenu extends Menu
{

 64

 static public $title="Kids Menu";
 const id = 5;
}

class DessertMenu extends Menu
{
 static public $title="Dessert Menu";
 const id = 6;
}

class AppetizerMenu extends Menu
{
 static public $title="Appetizer Menu";
 const id = 7;
}

interface AdjustPortion {
 public function setDinnerPortion($itemobject);
}

interface AdjustPrice {
 public function setDinnerPrices($itemobject);
 public function setHappyHourDrinkPrices($itemobject);
}

final class HappyHourMenu extends DrinkMenu implements AdjustPrice
{
 static public $title="Happy Hour Drink Menu";

 public function setHappyHourDrinkPrices($menuitemObject)
 {
 $adjusted_price = 1;
 $base_price = $menuitemObject->getPrice();

 //Make the dinner price 30% less than the normal price.
 $adjusted_price = ($base_price * 0.7);

 return round($adjusted_price,2);
 }

 public function setDinnerPrices($menuitemobject) { }
}

final class DinnerMenu extends LunchMenu implements AdjustPortion, AdjustPrice
{
 static public $title="Dinner Menu";
 //DinnerMenu inherits ID from LunchMenu

 public function setDinnerPortion($menuitemServingSize)
 {
 $adjustment = 1;
 $adjusted_servingsize = "";
 $portion = explode(" ", $menuitemServingSize);

 //Make the dinner portions 50% bigger than the lunch portion.
 foreach ($portion as $subportion)
 {
 if (is_numeric($subportion))
 {
 $adjustment = $subportion * 1.5;
 $adjusted_servingsize = $adjusted_servingsize . " " . round($adjustment,2);
 }
 else
 {
 $adjusted_servingsize = $adjusted_servingsize . " " . $subportion;
 }
 }

 return $adjusted_servingsize;
 }

 public function setDinnerPrices($menuitemPrice)
 {
 $adjusted_price = 1;

 //Make the dinner price 25% more than the lunch price.
 try
 {
 if ($menuitemPrice != 0)
 {
 $adjusted_price = ($menuitemPrice * 1.25);
 return round($adjusted_price,2);
 }

 65

 else
 {
 throw new Exception('MenuItem Price is $0.0');
 }
 }
 catch (Exception $e)
 {
 echo "Caught exception: " . $e->getMessage() . "\n";
 }
 }

 //Override the base method to use the AdjustPrice interface
 public function GetAllMenuItems($menuid)
 {
 $connection = Database::Connect();
 $this->query = "select mitm.*, mi.itemname, mi.description,
 mi.price, mi.picture, mi.servingsize
 from `menuitemtomenu`
 as mitm left join `menuitem`
 as mi on mitm.menuitemid = mi.menuitemid
 where mitm.menuid = $menuid";

 try
 {

 // Note: Recall that the throw new Exception(...) statement is already in the Database class in
Database.php.

 $menuitemList = Array();
 $cursor = Database::Reader($this->query, $connection);
 while ($row = Database::Read($cursor))
 {
 $menuitem = new MenuItem;
 $menuitem->menuitemid = $row['menuitemid'];
 $menuitem->itemname = $row['itemname'];
 $menuitem->price = self::setDinnerPrices($row['price']);
 $menuitem->description = $row['description'];
 $menuitem->servingsize = self::setDinnerPortion($row['servingsize']);
 $menuitemList[] = $menuitem;
 }
 return $menuitemList;
 }
 catch(Exception $e)
 {
 echo 'Caught exception: ', $e->getMessage(), "\n";
 }
 }

 public function setHappyHourDrinkPrices($menuitemObject){}
}

//DBMapper handles most of the communication between the model and the database
class DBMapper extends Menu
{

 public function Erase($menuitemid)
 {
 try
 {
 $connection = Database::Connect();
 $this->query = "DELETE mi.*, mitm.* FROM `menuitem` AS mi
 LEFT JOIN `menuitemtomenu` AS mitm ON mitm.menuitemid = mi.menuitemid
 WHERE mi.menuitemid = $menuitemid";

 $rows = Database::Query($this->query, $connection);
 }
 catch(Exception $e)
 {
 echo "Caught exception in Erase Method: " . $e->getMessage(), "\n";
 }
 }

 public function Save($data) {

 try
 {

 $connection = Database::Connect();

 if ((isset($data["menuid"])) && (isset($data["menuitemid"])))
 {

 // If the record doesn’t exist then we will INSERT it.
 $this->query = "select `menuitemid`, `menuid`
 from `menuitemtomenu`
 where `menuitemid`= " . $data['menuitemid'] .

 66

 " and `menuid`= " . $data['menuid'] . " LIMIT 1";

 // Note: Recall that the throw new Exception(...) statement is already in the
 // Database class in Database.php

 $rows = Database::Query($this->query, $connection);
 if ($rows == 0)
 {
 $this->query = "insert into `menuitemtomenu` (`menuitemid`,`menuid`) values (
 ". $data['menuitemid'] . ", " . $data['menuid'] . ")";
 }
 $insertId = Database::InsertOrUpdate($this->query, $connection);
 }
 else
 {

 $menuitem = new MenuItem;
 $menuitem->itemid = $data['menuitemid'];
 $menuitem->itemname = $data['itemname'];
 $menuitem->description = $data['description'];
 $menuitem->servingsize = $data['servingsize'];
 $menuitem->picture = $data['picture'];
 $menuitem->price = $data['price'];

 // Check to see if the record already exists in the menuitem table.
 // If so we will UPDATE it, if not we will INSERT it.

 $this->query = "select `menuitemid` from `menuitem`
 where `menuitemid`='" . $menuitem->itemid ."' LIMIT 1";

 // Note: Recall that the throw new Exception(...) statement is already in the
 // Database class in Database.php.
 $rows = Database::Query($this->query, $connection);

 if ($rows > 0)
 {
 $this->query = "update `menuitem` set
 `itemname`='" . mysql_real_escape_string($menuitem->itemname) . "',
 `description`='" . mysql_real_escape_string($menuitem->description) . "',
 `servingsize`='" . $menuitem->servingsize . "',
 `picture`='" . $menuitem->picture . "',
 `price`='" . $menuitem->price . "' where `menuitemid`='".$menuitem->itemid."'";
 }
 else
 {

$this->query = "insert into `menuitem`
(`itemname`,`description`,`servingsize`,`picture`,`price`) values (

 '".mysql_real_escape_string($menuitem->itemname)."',
 '".mysql_real_escape_string($menuitem->description)."',
 '".$menuitem->servingsize."',
 '".$menuitem->picture."',
 '".$menuitem->price."')";
 }
 $insertId = Database::InsertOrUpdate($this->query, $connection);
 }

 }
 catch (Exception $e)
 {
 echo "Caught exception in Save method: " . $e->getMessage(), "\n";
 }
 }

 public function getMenuItemTable()
 {
 $connection = Database::Connect();
 $this->query = "select menuitemid, itemname, description,
 price, picture, servingsize
 from `menuitem`";

 $menuitemList = Array();
 $cursor = Database::Reader($this->query, $connection);
 while ($row = Database::Read($cursor))
 {
 $menuitem = new MenuItem;
 $menuitem->menuitemid = $row['menuitemid'];
 $menuitem->itemname = $row['itemname'];
 $menuitem->price = $row['price'];
 $menuitem->servingsize = $row['servingsize'];
 $menuitem->description = $row['description'];
 $menuitemList[] = $menuitem;
 }
 return $menuitemList;
 }

}
?>

 67

Now to set the error reporting for an entire application, just insert the following two lines in the index.php file. The
following command will report all errors:

<?php
//index.php

ini_set('display_errors',1);

error_reporting(E_ALL);

//...more code

?>

Chapter 7

Model – View – Controller

 69

Understanding the Model-View-Controller Design Pattern

Model-View-Controller (MVC) design pattern expresses the separation of a software architecture's domain model,
presentation, and actions based on user input into three distinct areas:

Model
The Model is how the underlying data is structured. The model manages the behavior and data of the application domain.

View
The View is what is presented to the user or consumer. The View is a visual representation of the model that manages the
display of information by requesting information about the Model's state.

Controller
The Controller is the element that performs the processing based on user input. The Controller gives instructions to the
Model to change the Model's state.

Separating these three elements makes it easier to achieve loose coupling, because it makes it possible for the controller to
work with multiple different Model and View components. Both the View and the Controller depend on the Model. The
Model, on the other hand, does not depend on either the View or the Controller. This distinct relationship is one the key
benefits of the separation. This separation allows the model to be developed and tested independent of the visual
presentation.

PHP has a several popular and high quality MVC frameworks to choose from, each with their own assortment of pros and
cons to consider. However, in order the avoid any unnecessary confusion, we won’t dive into any one of the popular
frameworks at this point, instead we will develop our own custom MVC framework. As you recall from Chapter 7, we
already have developed our data model for our restaurant menu management application which is in the MenuModel.php
file and contains the base Menu class, MenuItem class, the DBMapper class which extends the base Menu class and all of
the derived sub-Menu classes which also extend the base Menu class. Now we will integrate this into a custom MVC
framework and add our View and Controller elements.

The MVC URL Structure & URL Mapping

To begin, you have no doubt seen the very recognizable URL structure that applications developed in the MVC framework
operate on:

http://domain/controller/action/id

To do this for our Restaurant Menu Management (MVC framework) application, we'll need to utilize .htaccess URL re-
writing with Apache.

We'll need to create a file named .htaccess (note the period at the start). This file will sit in our site's root directory. The
purpose of this file is to configure Apache and its modules on a per site/directory basis. In our case, .htaccess will look
like this:

Options +FollowSymLinks

RewriteEngine on

RewriteRule ^([a-zA-Z]*)/?([a-zA-Z]*)?/?([a-zA-Z0-9]*)?/?$

index.php?controller=$1&action=$2&id=$3 [NC,L]

The first two lines are preparing Apache for our new rewrite rule, which we're defining using the RewriteRule command.
This command first has a regular expression and is then followed by a generic URL with some variables in it. Effectively
what this rule is stating is that any URL that a user requests that matches this regular expression should be converted to
the specified true URL at a web server level. The user never sees this conversion. Any matches inside the regular
expression's round brackets are given a variable from left to right. The first variable is $1, the second is $2, etc. This
specific rule also allows for anything after the controller to be left off the URL (the question marks handle this).

 70

The index.php File

Our web server will point to index.php in the root directory as it will be the single point of entry for all requests. The
index.php file is where we will set up the error reporting for the application. The index.php file will establish an
"interpreter" object which is responsible for translating the requested URL into an instance of the relevant controller class,
and then executing the requested action (method in that controller class) on that controller instance. We will come back to
the index.php file after I have explained a few other things first.

<?php

//index.php

ini_set('display_errors',1);

error_reporting(E_ALL);

//reference the general classes

require("helperclasses/Interpretor.php");

require("helperclasses/BaseController.php");

require("helperclasses/Template.php");

require_once("helperclasses/Database.php");

// reference the data model classes here

require("models/MenuModel.php");

//reference the model classes here

//reference the controller classes here

//create the controller and execute the action

$interpreter = new Interpreter($_GET);

$controller = $interpreter->CreateController();

$controller->ExecuteAction();

?>

MVC Folder Structure

All controllers, models and views are individual files organized in relevant folders of the same name. The views folder has
a subfolder for each controller. Controllers and models files are individual PHP classes. Views files are PHP capable, but in
this example they will be pure HTML. Our basic folder structure will be the following:

/htdocs

 /models

 /views

 /controllers

/helperclasses

/images

/database

We obviously will place our MenuModel.php file in the models folder. Our Database.php file will go in the helperclasses
folder since it contains our Database class which facilitates the communication with the MySQL database. The database
directory will be used to store the actual .sql files that can be used to create our database, create the database schema (and
load it with some test data).

Since the .sql files contain some test data already, the first thing we are going to do is develop a way to present or view that
data. So let’s build the model, controller and view files that we need to show our restaurant menu. Once we have done this
we will be able to add the ability to edit and add menu items as well following the same pattern. Let’s proceed with the
development of our first Custom MVC Application – A Restaurant Menu Management Application.

We will call our first MVC element “show.” To create this element we will need a “show” model, a “show” controller and a
“show” view. The “show” controller will instantiate an instance of the “show” model which will provide the information to
present in the “show” view but how does the “show” controller know how to do what it has to do based on what the user

 71

does? The user interacts with our application via a web browser. The web browser sends a request to a URL. Recall that an
MVC URL looks like this:

http://domain/controller/action/id

Or more specific to our example:

http://localhost/show/Display

Our controller needs to receive interpreted input from the URL and execute commands accordingly. Since we will also
have controllers to handle edit and add capabilities we will need a base class that receives URL input and relays
commands which can be extended. It really shouldn’t be the job of the base controller to interpret URL command so we
will also need another utility class that does this work. Let’s call this class Interpreter and put is in a utility class file called
Interpreter.php

Let’s start with the Interpreter class:

class Interpreter {

 private $controller;

 private $action;

 private $urlvalues;

 //store the URL values on object creation

 public function __construct($urlvalues)

 {

 $this->urlvalues = $urlvalues;

 if ($this->urlvalues['controller'] == "")

 {

 $this->controller = "show";

 }

 else

 {

 $this->controller = $this->urlvalues['controller'];

 }

 if ($this->urlvalues['action'] == "")

 {

 $this->action = "index";

 }

 else

 {

 $this->action = $this->urlvalues['action'];

 }

 }

An object instantiated from this class will break down the URL commands (with assistance from .htaccess) and interpret
which specific controller is being requested and what action (method) in that controller class is being called. I hope you
remember some key things from the previous chapters that may prompt you to ask some questions here. Unless we are
calling a static method from our controller class (which won’t work if we are to create several controllers that do different
things), we need to create an instance of our controller object. It follows that we need to be able to instantiate a controller
object specific to what the URL command is. Hence the Interpreter class needs a method to do this:

 //instantiate the requested controller as an object

 public function CreateController()

 {

 //does the class exist?

 if (class_exists($this->controller))

 {

 $parents = class_parents($this->controller);

 //does the class extend the controller class?

 if (in_array("BaseController",$parents))

 {

 //does the class contain the requested method?

 if (method_exists($this->controller,$this->action))

 {

 return new $this->controller($this->action,$this->urlvalues);

 }

 else

 {

 throw new Exception("Bad Method: " . $this->urlvalues);

 72

 }

 }

 else

 {

 throw new Exception("Bad Controller: " . $this->urlvalues);

 }

 }

 else

 {

 throw new Exception("Bad Controller: " . $this->urlvalues);

 }

 }

Let’s put all of this in a utility class file called Interpret.php and save it in the helperclasses folder

<?php

//Interpreter.php

class Interpreter {

 private $controller;

 private $action;

 private $urlvalues;

 //store the URL values on object creation

 public function __construct($urlvalues)

 {

 $this->urlvalues = $urlvalues;

 if ($this->urlvalues['controller'] == "")

 {

 $this->controller = "show";

 }

 else

 {

 $this->controller = $this->urlvalues['controller'];

 }

 if ($this->urlvalues['action'] == "")

 {

 $this->action = "index";

 }

 else

 {

 $this->action = $this->urlvalues['action'];

 }

 }

 //instantiate the requested controller as an object

 public function CreateController()

 {

 try

 {

 //does the class exist?

 if (class_exists($this->controller))

 {

 $parents = class_parents($this->controller);

 //does the class extend the controller class?

 if (in_array("BaseController",$parents))

 {

 //does the class contain the requested method?

 if (method_exists($this->controller,$this->action))

 {

 return new $this->controller($this->action,$this->urlvalues);

 }

 else

 {

 return new Exception("Bad Method: " . $this->urlvalues);

 }

 }

 else

 {

 return new Exception("Bad Controller: " . $this->urlvalues);

 }

 }

 else

 {

 return new Exception("Bad Controller: " . $this->urlvalues);

 73

 }

 }

 catch (Exception $e)

 {
echo 'Caught exception: ', $e->getMessage(), "\n";

 }

 }

}

?>

Now let’s write our base controller class that will do the general work of relaying commands that come from the URL via
the interpreter and put it in it’s own utility class file:

<?php

//BaseController.php

abstract class BaseController {

 protected $urlvalues;

 protected $action;

 public function __construct($action, $urlvalues) {

 $this->action = $action;

 $this->urlvalues = $urlvalues;

 }

 public function ExecuteAction($input) {

 return $this->{$this->action}($input);

 }

 protected function ReturnView($viewmodel) {

 $viewlocation = 'views/' . get_class($this) . '/' . $this->action . '.php';

 require($viewlocation);

 }

}

?>

While we are discussing the utility classes let's go ahead and introduce the last one we need. This one will assist in writing
dynamic data to our presentation files by reviewing a "dumb" html template and replacing keys in that file with dynamic
data that flows from the model. We’ll name this class Template and also put it in it’s own PHP file:

<?php

class Template

{

public $file;

 public $vars=array();

 public function set($key, $value)

 {

 $this->vars[$key] = $value;

 }

 public function display()

 {

 try

 {

 if(file_exists($this->file))

 {

 $output = file_get_contents($this->file);

 foreach($this->vars as $key => $value)

 {

 $output = preg_replace('/{'.$key.'}/', $value, $output);

 }

 echo $output;

 }

 else

 {

 throw new Exception("Missing template --" . $this->file);

 74

 }

 }

 catch (Exception $e)

 {

 echo "Exception caught: " . $e->getMessage();

 }

 }

}

?>

Notice that the display() method uses the PHP regular expression function preg_replace() to replace any text in
the HTML view file that is enclosed by curly braces:

$output = preg_replace('/{'.$key.'}/', $value, $output);

This $key and corresponding $value are stored in the vars array . Key /value pairs are added to the vars array via the

set($key, $value) function. If this doesn’t make sense to you yet it will after we look at the markup for the view.
Let’s write up a simple HTML page that will “show” the menu:

<!-View markup to Show the menu data -->

<--

Header

-->

<html>

<head>

</head>

<body>

<table width='900'>

<--

This section will print once per sub menu object, if we create a DrinkMenu,

AppetizerMenu, LunchMenu and DessertMenu this section will be printed 4 times to display the title

of the corresponding menu

-->

<tr><td colspan='3'><center><h1><i>{Title}</i></h1></center></td></tr>

<tr>

<th width='*' align='left'>Menu Item</th>

<th width='250' align='left'>Serving Size</th>

<th width='40' align='left'>Price</th>

</tr>

<tr><td colspan='3'> </td></tr>

<--

This section will be used in a loop and will print once per menuitem object

-->

<tr>

<td width='*'>{itemname}</td>

<td width='250'>{servingsize}</td>

<td width='40'>${price}</td>

</tr>

<tr><td colspan='3'><div style='word-wrap: break-word;'>{description}</div></td></tr>

<tr><td colspan='3'> </td></tr>

</table>

<--

Footer

-->

</body>

</html>

Take note of the “keys” which are enclosed by the curly braces: {Title}, {itemname}, {servingsize}, {price}

and {description}. The Display function in the Template class will use the preg_replace method to find and replace
this pattern of text with an actual correlating value that is gets from the data model which in turn gets the value from the
database.

 75

View

Although it is acceptable to include PHP in your View files it is better to avoid it if possible and maintain a clean
presentation layer that consist only of pure markup language. The essence of MVC is to keep major aspects of an
application completely separated. In order to achieve that with our Restaurant Menu Management application we need
to break up the HTML above into separate template files because a couple of sections of this page will be used in different
iterative calls, as the comments in the HTML indicate. In this particular view which will “show” the menu, we need to
break up this markup into four separate HTML view files as such:

<!-

header_template.html

-->

<html>

<head>

</head>

<body>

<table width='900'>

<!- ------ -->

<!-

label_template.html

-->

<tr><td colspan='3'><center><h1><i>{Title}</i></h1></center></td></tr>

<tr>

<th width='*' align='left'>Menu Item</th>

<th width='250' align='left'>Serving Size</th>

<th width='40' align='left'>Price</th>

</tr>

<tr><td colspan='3'> </td></tr>

<!- ------ -->

<!-

menu_template.html

-->

<tr>

<td width='*'>{itemname}</td>

<td width='250'>{servingsize}</td>

<td width='40'>${price}</td>

</tr>

<tr><td colspan='3'><div style='word-wrap: break-word;'>{description}</div></td></tr>

<tr><td colspan='3'> </td></tr>

</table>

<!- ------ -->

<!-

footer_template.html

-->

</body>

</html>

<!- ------ -->

We will then save these view files in a folder called “show/templates” in the views directory so that our folder structure
now looks like this:

/htdocs

 /models

 /views

 /show

 /templates

 76

 /controllers

/helperclasses

/images

/database

The Display Class

Now that our presentation templates are set up we need one more thing to complete our view for the Show feature, a
utility class called Display(). The Display class will be responsible for assembling the template files and writing
dynamic data where required that comes from the corresponding model. The Display class will use objects instantiated
from the Template class to write this dynamic data to the static template files. We’ll put this class in a file called
Display.php and save it in the show/views directory.

<?php

$display = new Display();

$display->Header();

$display->Body($viewmodel);

$display->Footer();

class Display

{

 public function Header()

 {

 require_once('views/show/templates/header_template.html');

 }

 public function Body($viewmodel)

 {

 foreach ($viewmodel as $menu)

 {

 $template_header= new Template();

 $template_header->file = "views/show/templates/label_template.html";

 $template_header->set('Title', $menu['title']);

 $template_header->display();

 $template_body = new Template();

 $template_body->file = "views/show/templates/menu_template.html";

 foreach ($menu['data'] as $menuitem)

 {

 $template_body->set('itemname', strtoupper($menuitem->itemname));

 $template_body->set('description', $menuitem->description);

 $template_body->set('servingsize', $menuitem->servingsize);

 $template_body->set('price', $menuitem->price);

 $template_body->display();

 }

 }

 }

 public function Footer()

 {

 require_once('views/show/templates/footer_template.html');

 }

}

?>

As you can see the Display() class for the Show feature consists of only three methods, Header(), Body() and

Footer(). All of the information we need from the data model to present a restaurant menu to the user is in the input

variable $viewmodel, which to serve our purposes here, is passed to the Body() method because that is where all of the
dynamic formatting will occur in this particular scenario.

 77

Now we can proceed to link everything together with a model and controller to show the menu. The controllers contain
methods that directly correspond to actions given by the user in the URL, hence the action in the URL is actually the name
of the method in the controller which is to be invoked. The name of the controller that is called, which is actually a class
that contains the action (method), is also in the URL. Controller actions/methods are responsible for creating an instance
of the relevant model which in turn facilitates the transfer of data to the corresponding view. The controller and it’s related
model should be kept in files that have identical names but stored in different directories. In this case we want to present
the menu data so we will have a controller file called “show.php” which is kept in the controllers directory and a model file
called “show.php” which is kept in the models directory.

Controller

As it’s name implies, the Controller controls the communication between the major elements of an MVC application. It
serves as a “switchboard operator” that relays requests and responses between the model and the view. In regards to our
restaurant menu application, the “Show” controller extends the BaseController class which receives the action from the
Interpreter and executes that action with the ExecuteAction()function. The “show” controller extends the
BaseController class which receives the action from the Interpreter and executes that action with the
ExecuteAction()function.

Keep in mind that the URL command that will “show” the menu is:

http://localhost/show/Display

The Interpreter evaluates this URL and determines that the Display() method of the Show controller class needs to be

invoked so it creates an instance of the Show class that’s in /htdocs/controllers/show.php and executes the Display()

method. The Display() method does three things. First it creates an instance of the corresponding ShowModel called

$viewmodel. Next it invokes the Display() method of the $viewmodel object. Thirdly it passes the response from the

ShowModel to the corresponding View in the view/show/Display.php file via the ReturnView() method that’s defined in
the BaseController class. As you can see above in the Display.php file, the corresponding view for the Show feature is
setup by creating an instance of the Display() class in the Display.php file and invoking it’s Header(), Body() and

Footer() methods.

Here is our “Show” controller:

<?php

/* *** controllers/show.php *** */

class Show extends BaseController {

 public function Display() {

 $viewmodel = new ShowModel();

 $this->ReturnView($viewmodel->Display());

 }

}

?>

Now we need to build a model, called ShowModel, that corresponds to the controller above.

Model

As you can see below, the model that corresponds to the “Show” controller is defined in a class called ShowModel in a file
named show.php that is in the models directory:

 78

<?php

/* *** models/show.php *** */

class ShowModel {

 public function Display() {

 $drinks = new DrinkMenu();

 $appetizers = new AppetizerMenu();

 $lunch = new LunchMenu();

 $dinner = new DinnerMenu();

 $arr_drinks=array("title"=>DrinkMenu::$title,"data"=>$drinks->getAllMenuItems(DrinkMenu::id));

 $arr_appetizers=array("title"=>AppetizerMenu::$title,"data"=>$appetizers->getAllMenuItems(AppetizerMenu::id));

 $arr_lunch=array("title"=>LunchMenu::$title,"data"=>$lunch->getAllMenuItems(LunchMenu::id));

 $arr_dinner=array("title"=>DinnerMenu::$title,"data"=>$dinner->getAllMenuItems(DinnerMenu::id));

 return array($arr_drinks, $arr_appetizers, $arr_lunch, $arr_dinner);

 }

}

?>

This is where we finally put our data model to use by creating some sub menu objects which extend the abstract Menu
class. Recall that the abstract Menu class has a method called getAllMenuItems which creates MenuItem objects and
loads them with relevant data from the menuitem table in the database. Also recall that we override this method in the
DinnerMenu class.

Note that according to our business design, the LunchMenu and DinnerMenu will use the same MenuItems in our
application because we employed interfaces that enforce this business rule. Remember that these interfaces are used for
the purpose of adjusting the prices and serving sizes between lunch and dinner menus which both have the same menu
items. As a result we override the getAllMenuItems($menuitemid) method of the abstract Menu class in the DinnerMenu
class. Had we not designed our application this way we normally would have included the getAllMenuItems() method in
the DBMapper class instead of including it in the base Menu class. We did it the way that we did in order to demonstrate
the use of interfaces.

For starters, I am just going to add sub menus for drinks, appetizers, lunch and dinner by creating instances of the
DrinkMenu, AppetizerMenu, LunchMenu and DinnerMenu classes respectively. Each of these objects will call the
getAllMenuItems() method to retrieve relevant data which correlates to the const id of each object’s class. The

$dinner object calls the getAllMenuItems() method that it overrides in order to implement the interfaces that are
referenced by the DinnerMenu class. When you look at the output be sure to compare prices and serving sizes between
matching menu items on the Lunch and Dinner Menus.

There is one last thing we have to do before all of this will work. We have to add references to the controllers/show.php
and models/show.php files to the index.php file. The index.php file is the point of entry for URL requests and is also the
assembly file that ties everything together. Our data model and helper files are all referenced here too. It also is where we
create an instance of the Interpreter class and pass it the $_GET array that contains the query string values in the URL.
The instance of the Interpreter class then creates the appropriate controller object based on the URL input. The last thing
the index.php file does is invoke the ExecuteAction method of the controller object which in turn executes the action in the
URL:

<?php

ini_set('display_errors',1);

error_reporting(E_ALL);

//reference the general classes

require("helperclasses/Interpreter.php");

require("helperclasses/BaseController.php");

require("helperclasses/Template.php");

require_once("helperclasses/Database.php");

//reference the data model

require("models/MenuModel.php");

//reference the model classes

 79

require("models/show.php");

//reference the controller classes

require("controllers/show.php");

//create the controller and execute the action

$interpreter = new Interpreter($_GET);

$controller = $interpreter->CreateController();

$controller->ExecuteAction();

?>

And that’s it! Let’s take a look at the output:

 80

 81

 82

Figure 8-1. Browser output from http://localhost/show/Display

Develop the Functionality to Add New Menu Items

So now if we want to add additional capability to the restaurant menu management application we just follow the same
pattern. Our application doesn’t have add or edit capability yet nor a way to assign menu items to menus. Recall that we
already developed a Save() method in the DBMapper class of the data model. The Save() method receives the $_POST
array as input and has the ability to determine if the input it receives needs to be inserted into the database if it doesn’t
exist or updated in the database if it does. It also determines which database table it needs to work with. Our database is
very simple, the schema only includes two tables:

Figure 8-2. Restaurant Database Entity Relationship Diagram

In order to develop the capability to add new menu items to the database, we need to be aware of the data that we want to
capture from the user. In bigger applications that adhere to domain driven design this is usually determined from the data
model. For our purposes here we’ll just refer to the database schema. Keeping this in mind, let’s type up an HTML
document that includes a form that the user can use to add a new menu item to the menuitem table.

 83

<html>

<head>

<title>Add New Menu Item</title>

</head>

<body>

<form method="POST" action="index.php/add/Save">

<table>

<tr><td>Item Name:</td><td><input type="text" name="itemname"></td></tr>

<tr><td>Description:</td><td><input type="text" name="description"></td></tr>

<tr><td>Serving Size:</td><td><input type="text" name="servingsize"></td></tr>

<tr><td>Picture:</td><td><input type="text" name="picture"></td></tr>

<tr><td>Price:</td><td><input type="text" name="price"></td></tr>

<tr><td><input type="submit" name="submit" value="submit"></td></tr>

</table>

</form>

</body>

</html>

Observe the tag line that opens the form:

<form method="POST" action="index.php/add/Save">

We intend to post the user input data from this form to the index.php file which in turn will make the $_POST array
available to the appropriate controller. Based on the action in the form tag line we will be calling this new controller “Add”
and it will invoke a method called Save(). This leads into what we need to do next, create the new controller. We’ll first
need to extend the BaseController class so that we have access to it’s methods. Just like we did for the Show controller,
we’ll create a method called Display() that serves as the relay between the model and the view. The Save() method of

this controller will take the $_POST array that contains the user inputs and pass them to the Save() method in the

DBMapper class of MenuModel.php which in turn makes sure the input gets written to the database. The Save()
redirects the user to the edit page which we have not developed yet. Let’s name the file that contains this controller
add.php and save it off into the controllers directory.

Controller for the Add Menu Item Feature

<?php

// controller/add.php

class Add extends BaseController {

 protected function Display() {

 $viewmodel = new AddModel();

 $this->ReturnView($viewmodel->Display());

 }

 protected function Save()

 {

 $saveitem = new DBMapper();

 $saveitem->Save($_POST);

 header('Location: index.php/edit/Display');

 }

}

?>

Our model for this feature will be simple since we aren’t sending any data to the view because our “Add Menu Item” form
doesn’t need anything from the data model. Keeping with our naming convention let’s create an AddModel class. To stay
consistent with the way we did things for the Show feature, let’s give the AddModel class a Display() method which
returns nothing because the View requires nothing from the model in this scenario:

Model for the Add Menu Item Feature

<?php

// models/add.php

 84

class AddModel {

 public function Display()

 {

 return;

 }

}

?>

View for the Add MenuItem Feature

To be consistent with the way we split the view between a Header, Body and Footer, let’s split up the Add New Menu Item
HTML document into three separate files accordingly. Let’s also add some navigation links in the footer that we can use to
choose which view we want to see in the browser. Notice that new add controller and ShowAddForm() action/method is
used in the navigation link that brings up the new Add Menu Item page. We should also go ahead and copy/paste these
navigation links into the views/show/templates/footer_template.html file.

View Templates for the Add MenuItem Feature

<!-

header_addmenuitem.html

-->

<html>

<head>

<title>Add New Menu Item</title>

</head>

<!- ------ -->

<!-

body_addmenuitem.html

-->

<body>

<form method="POST" action="index.php/add/Save">

<table>

<tr><td>Item Name:</td><td><input type="text" name="itemname"></td></tr>

<tr><td>Description:</td><td><input type="text" name="description"></td></tr>

<tr><td>Serving Size:</td><td><input type="text" name="servingsize"></td></tr>

<tr><td>Picture:</td><td><input type="text" name="picture"></td></tr>

<tr><td>Price:</td><td><input type="text" name="price"></td></tr>

<tr><td><input type="submit" name="submit" value="submit"></td></tr>

</table>

</form>

<!- ------ -->

<!-

footer_addmenuitem.html

-->

</ br>

</ br>

<center>

<table width="100%">

<tr>

<td>View Menu</td>

<td>Add New MenuItem</td>

</tr>

</table>

</center>

</body>

</html>

<!- ------ -->

Now let’s create the folder path “add/templates” in the views directory and save these three files in it.

 85

Display Manager for the Add MenuItem Feature

Just like we did for the Show Menu feature, we will build a Display() class that will manage the assembly of the view

for the Add Menu Item feature. This Display() class will reside in a file called Display.php in the add/views folder. As
was mentioned above, the view for this Add Menu Item feature doesn’t need anything from the data model to build an
input form so this Display class will be simple.

So let’s create a class called Display() and give it three simple methods to format our view: Header(), Body() and

Footer(). We’ll put this class in a PHP file called Display.php, create an instance of this class, invoke it’s methods and
save it to the views/add folder so when this file is referenced by the controller it will assemble the view:

<?php

// views/add/Display.php

$display = new Display();

$display->Header();

$display->Body();

$display->Footer();

class Display

{

 public function Header()

 {

 require_once('views/add/templates/header_addmenuitem.html');

 }

 public function Body()

 {

 require_once('views/add/templates/body_addmenuitem.html');

 }

 public function Footer()

 {

 require_once('views/add/templates/footer_addmenuitem.html');

 }

}

?>

Now all that’s left to do is to add references to our new model and controller to the index.php file:

<?php

ini_set('display_errors',1);

error_reporting(E_ALL);

//require the general classes

require("helperclasses/Interpreter.php");

require("helperclasses/BaseController.php");

require("helperclasses/Template.php");

require_once("helperclasses/Database.php");

//require the data model

require("models/MenuModel.php");

//require the model classes

require("models/show.php");

require("models/add.php");

//require the controller classes

require("controllers/show.php");

require("controllers/add.php");

//create the controller and execute the action

$interpreter = new Interpreter($_GET);

$controller = $interpreter->CreateController();

$controller->ExecuteAction();

?>

 86

Now we can add new menu items to the database from the user interface. We’ll also need a way to assign new menu items
to one or more available menus so let’s write out the markup for a page that will allow the user to do this:

<html>

<head>

<title>Assign Menu Items to Menus</title>

</head>

<body>

<form method="POST" action="index.php/assign/Save">

<table>

<tr><td>Select a Single Menu Item:</td></tr>

<tr>

<td>

<select name="menuitemid">

<option value="{menuitemid}">{itemname}</option>

</select>

</td>

</tr>

<tr><td> </td></tr>

<tr><td>Choose the Menus you want to add the Menu Item to</td></tr>

<tr><td>

<select name="menuid" multiple="multiple">

<option value="{menuid}">{menuname}</option>

</select>

</td>

</tr>

</table>

<input type="submit" value="UPDATE">

</form>

<center>

<table width="100%">

<tr>

<td>View Menu</td>

<td>Add New MenuItem</td>

<td>Assign Item to Menu</td>

</tr>

</table>

</center>

</body>

</html>

</body>

</html>

What we have done in the html document above is create a select list that we will want to load all available menu items
into and another select list that will contain all of the available menus. The value in the first select list will be the
menuitemid of the menuitem that is selected by the user. We know that since we are loading a select list with dynamic
data that a loop is going to be involved with both select lists so let’s segregate the segments of this page that will be used
iteratively and the header, footer and other static segments of this HTML page. The resulting view will be split between
five template files, we will save them in the templates folder in the views/assign directory.

View Templates for the Assign MenuItem-to-Menu Feature

<!- header_assignmenuitem.html -->

<html>

<head>

<title>Assign Menu Items to Menus</title>

 87

</head>

<body>

<form method="POST" action="index.php/assign/Save">

<table>

<tr><td>Select a Single Menu Item:</td></tr>

<tr>

<td>

<select name="menuitemid">

<!- ----------------- -->

<!- body_assignmenuitem1.html -->

<option value="{menuitemid}">{itemname}</option>

<!- ----------------- -->

<!- body_assignmenuitem2.html -->

</select>

</td>

</tr>

<tr><td> </td></tr>

<tr><td>Choose the Menus you want to add the Menu Item to</td></tr>

<tr><td>

<select name="menuid" multiple="multiple">

<!- ----------------- -->

<!- body_assignmenuitem3.html -->

<option value="{menuid}">{menuname}</option>

<!- ----------------- -->

<!- footer_assignmenuitem1.html -->

</select>

</td>

</tr>

</table>

<input type="submit" value="UPDATE">

</form>

<center>

<table width="100%">

<tr>

<td>View Menu</td>

<td>Add New MenuItem</td>

<td>Assign Item to Menu</td>

</tr>

</table>

</center>

</body>

</html>

</body>

</html>

<!- ----------------- -->

Notice that the footer now includes a navigation link to the Assign Menuitem to Menu page. Let’s proceed with writing out
a controller for the assign feature and put it in a file called assign.php and save it to the controllers directory

Controller for the Assign MenuItem-to-Menu Feature

<?php

// controllers/assign.php

class Assign extends BaseController {

 protected function Display() {

 88

 $viewmodel = new AssignModel();

 $this->ReturnView($viewmodel->Display());

 }

 protected function Save()

 {

 $assignitem = new DBMapper();

 $assignitem->Save($_POST);

 header('Location: index.php?controller=show&action=Display');

 }

}

?>

Now do to the nature of our design, we do not have a menu table in the database. Instead we create our sub menus in our
data model by creating sub menu classes that extends the abstract menu class (i.e.: LunchMenu, DinnerMenu, KidMenu,
etc.). Hence, we must manually add our sub menus and their IDs to an array in the Display() method that will be

passed on to the display and load the select list that lists the menus. The ShowAssignForm() gets the menuitems from
the database via the data model. The Save() method is basically the same as it is in the “add” controller, we just redirect
the view back to the Edit form which we are about to create after we develop the AssignModel and add the Assign
controller and model references to index.php.

So let’s proceed with developing the AssignModel. Just like with the ShowModel and AddModel, the AssignModel class
will include a Display() method. This Display() method for the Assign MenuItem-to-Menu Feature will need to fetch
the menuitem table from the database in addition to having an array to correspond to the available sub menu classes we
created in the data model. The view for this feature will need this information to populate the select lists on the user
interface.

Model for the Assign MenuItem-to-Menu Feature

<?php

class AssignModel {

 public function Display()

 {

 $loadtable = new DBMapper();

 $menuitems=$loadtable->getMenuItemTable();

 $arr_menuitems = array("menuitem"=>$menuitems);

 $menus = array("2"=>"Drinks","3"=>"Lunch & Dinner","5"=>"Kids","6"=>"Dessert","7"=>"Appetizers");

 $arr_menus = array("menu"=>$menus);

 return array($arr_menuitems, $arr_menus);

 }

}

?>

The Display() method of the AssignModel class uses the getMenuItemTable() method of the DBMapper class in
MenuModel.php to grab the entire menuitem table. Both the data from the menuitem table and the array that has the
menu names and IDs are each packaged in different arrays which are in turn wrapped in an array themselves which will be
shipped to the view as the return value of this Display() method. The controller passes this return value to the view in a

variable called $viewmodel.

 89

Display Manager for the Assign MenuItem-to-Menu View

The corresponding Display() method in the view’s Display class will un-wrap these nested arrays from the AssignModel
with nested foreach loops so that this data can be presented according to the format set up by the markup language of
the corresponding template files. Just like with the Show and Add features, we will instantiate the Display() class in the
views/assign/Display.php file and the Body() method will receive this packaged data from the AssignModel as input and
do the un-wrapping:

<?php

$display = new Display();

$display->Header();

$display->Body($viewmodel);

$display->Footer();

class Display{

 public function Header()

 {

 require_once('views/assign/templates/header_assignmenuitem.html');

 }

 public function Body($viewmodel)

 {

 $template_body1 = new Template();

 $template_body1->file = "views/assign/templates/body_assignmenuitem1.html";

 foreach ($viewmodel as $selectlist)

 {

 foreach ($selectlist['menuitem'] as $menuitem)

 {

 $template_body1->set('menuitemid', $menuitem->menuitemid);

 $template_body1->set('itemname', $menuitem->itemname);

 $template_body1->display();

 }

 }

 require('views/assign/templates/body_assignmenuitem2.html');

 $template_body3 = new Template();

 $template_body3->file = "views/assign/templates/body_assignmenuitem3.html";

 foreach ($viewmodel as $selectlist)

 {

 foreach ($selectlist['menu'] as $menuid => $menuname)

 {

 $template_body3->set('menuname', $menuname);

 $template_body3->set('menuid', $menuid);

 $template_body3->display();

 }

 }

 }

 public function Footer()

 {

 require_once('views/assign/templates/footer_assignmenuitem.html');

 }

}

?>

We employed objects instantiated from the Template class twice in the Body() method because we have two select lists
which will need to be dynamically loaded. All together the Header(), Body() and Footer() assemble a complete view that

 90

incorporates relevant information from the database. Now we just need to tie it into the application via the index.php file
by requiring the files that contain the model and controller:

<?php

ini_set('display_errors',1);

error_reporting(E_ALL);

//require the general classes

require("helperclasses/Interpreter.php");

require("helperclasses/BaseController.php");

require("helperclasses/Template.php");

require_once("helperclasses/Database.php");

//require the data model

require("models/MenuModel.php");

//require the model classes

require("models/show.php");

require("models/add.php");

require("models/assign.php");

//require the controller classes

require("controllers/show.php");

require("controllers/add.php");

require("controllers/assign.php");

//create the controller and execute the action

$interpreter = new Interpreter($_GET);

$controller = $interpreter->CreateController();

$controller->ExecuteAction();

?>

Lastly we will develop the capability to edit and delete menu items. Again, referring back to the DBMapper class in the
ModelMenu.php file, you can see that we have already developed an Erase() method and the Save() method that has
the capability to update existing records in the database. It follows that our EditModel class of our “Edit” controller will
need methods that use these DBMapper methods along with a Display() method that relays communication between the
model and view.

This time, just to demonstrate that you don’t have to start with the View when developing new capability in an application,
we’ll build our controller first based on the assumptions we just made about what it will need to do. Beginning with
extending the BaseController class, let’s create the methods Display(), Save() and Erase(). We’ll make the
assumption that the user will want to be immediately re-directed back to the Edit page to verify that the edit/delete action
worked so let’s put those re-direct commands in both the Save() and Erase() methods.

Controller for the Edit/Delete MenuItem Feature

<?php

// controllers/edit.php

class Edit extends BaseController {

 public function Display()

 {

 $viewmodel = new EditModel();

 $this->ReturnView($viewmodel->Display());

 }

 public function Save()

 {

 $updateitem = new DBMapper();

 $updateitem->Save($_POST);

 header('Location: index.php/edit/Display');

 }

 public function Erase()

 91

 {

 $eraseitem = new DBMapper();

 $eraseitem->Erase($_GET['id']); //menuitemid passed through the URL

 header('Location: index.php/edit/Display');

 }

}

?>

Now we need a model for the Edit feature. We know that we will want to the ability to edit all of the properties of a
menuitem and that we will want to see what the current values are for those properties for all available menuitems in the
database. Hence we will need to pull in the menuitem table again as we did with the Assign MenuItem-to-Menu feature so
let’s to our Edit model.

Model for the Edit MenuItem Feature

<?php

class EditModel {

 public function Display()

 {

 $loadtable = new DBMapper();

 $data=$loadtable->getMenuItemTable();

 return($data);

 }

}

?>

The EditModel will return the array that it receives from the getMenuItemTable() method of the DBMapper class and
the Edit controller will pass it along to the Edit view where it will presumably be received by the Edit view’s Display
management object. Before we build our Display() class for our view, let’s write out the markup for this view so we can
better understand how we will need to set up our formatting in the Display() class:

General markup for the Edit MenuItem Page:

<html>

<head>

<title>Edit Menu Items</title>

</head>

<body>

<table>

<tr>

<th>ID</th>

<th>Item Name</th>

<th>Description</th>

<th>Price</th>

<th>Serving Size</th>

<th> </th>

<th> </th>

<form method="POST" action="index.php/edit/Save">

<tr>

<td><input type="hidden" name="menuitemid" value="{menuitemid}">{menuitemid}</td>

<td><textarea cols="35" rows="1" name="itemname">{itemname}</textarea></td>

<td><textarea cols="55" rows="1" name="description">{description}</textarea></td>

<td><input type="text" name="price" value="{price}"></td>

<td><input type="text" name="servingsize" value="{servingsize}"></td>

<td><input type="submit" value="UPDATE"></td>

<td>DELETE</td>

</tr>

</form>

</table>

</ br>

 92

</ br>

<center>

<table width="100%">

<tr>

<td>View Menu</td>

<td>Edit Menu</td>

<td>Add New MenuItem</td>

<td>Assign Item to Menu</td>

</tr>

</table>

</center>

</body>

</html>

</body>

</html>

Notice that there is a navigation link to the Edit Menu page. This footer section should be copy and pasted to the footer
sections in the other views as well to keep things consistent. In the HTML above we have our keys in place and we set up
controls for UPDATE and DELETE. The UPDATE feature will POST user changes to index.php which will in turn make
the $_POST data available to the Edit controller. The DELETE feature calls the index.php file and tells it that it wants the
Edit” controller to invoke the Erase() method on the menuitemid that it passes to it through the URL.

View Templates for the Edit MenuItem Feature

Let’s break up the HTML for the Edit view into three template files that will be saved to views/edit/templates:

<!-- HEADER TEMPLATE -->

<!-- header_editmenuitem.html -->

<html>

<head>

<title>Edit Menu Items</title>

</head>

<body>

<table>

<tr>

<th>ID</th>

<th>Item Name</th>

<th>Description</th>

<th>Price</th>

<th>Serving Size</th>

<th> </th>

<th> </th>

</tr>

<!-- HEADER TEMPLATE -->

<!-- BODY TEMPLATE -->

<!-- body_editmenuitem.html -->

<form method="POST" action="index.php/edit/Save">

<tr>

<td><input type="hidden" name="menuitemid" value="{menuitemid}">{menuitemid}</td>

<td><textarea cols="35" rows="1" name="itemname">{itemname}</textarea></td>

<td><textarea cols="55" rows="1" name="description">{description}</textarea></td>

<td><input type="text" name="price" value="{price}"></td>

<td><input type="text" name="servingsize" value="{servingsize}"></td>

<td><input type="submit" value="UPDATE"></td>

<td>DELETE</td>

</tr>

</form>

<!-- BODY TEMPLATE -->

<!-- FOOTER TEMPLATE -->

<!-- footer_editmenuitem.html -->

</table>

</ br>

</ br>

<center>

<table width="100%">

<tr>

<td>View Menu</td>

 93

<td>Edit Menu</td>

<td>Add New MenuItem</td>

<td>Assign Item to Menu</td>

</tr>

</table>

</center>

</body>

</html>

</body>

</html>

<!-- FOOTER TEMPLATE -->

Now we can proceed with the Display manager for the Edit feature:

Display Manager for the Edit View

<?php

$display = new Display();

$display->Header();

$display->Body($viewmodel);

$display->Footer();

class Display {

 public function Header()

 {

 require_once('views/edit/templates/header_editmenuitem.html');

 }

 public function Body($viewmodel)

 {

 $template_body = new Template();

 $template_body->file = "views/edit/templates/body_editmenuitem.html";

 foreach ($viewmodel as $menuitem)

 {

 $template_body->set('menuitemid', $menuitem->menuitemid);

 $template_body->set('itemname', $menuitem->itemname);

 $template_body->set('description', $menuitem->description);

 $template_body->set('servingsize', $menuitem->servingsize);

 $template_body->set('price', $menuitem->price);

 $template_body->display();

 }

 }

 public function Footer()

 {

 require_once('views/edit/templates/footer_editmenuitem.html');

 }

}

?>

Now, we just need to update the index.php file with references to the controllers/edit.php and models/edit.php files and
we are in business:

<?php

ini_set('display_errors',1);

error_reporting(E_ALL);

//require the general classes

require("helperclasses/Interpreter.php");

require("helperclasses/BaseController.php");

require("helperclasses/Template.php");

 94

require_once("helperclasses/Database.php");

//require the data model

require("models/MenuModel.php");

//require the model classes

require("models/show.php");

require("models/add.php");

require("models/assign.php");

require("models/edit.php");

//require the controller classes

require("controllers/show.php");

require("controllers/add.php");

require("controllers/assign.php");

require("controllers/edit.php");

//create the controller and execute the action

$interpreter = new Interpreter($_GET);

$controller = $interpreter->CreateController();

$controller->ExecuteAction();

?>

The complete code base for the restaurant menu management application that we just developed, and database files are
available for download at:

http://www.php-this.com/downloads/restmenuapp_mvc

Verification Code: ST32919

In the code base that you can download I also included Integrate_Display.php files in the view folders which bypass the
use of templates altogether and incorporate the view in a single file that integrates PHP with the markup language. The
clean method of using templates is the proper way, or the purest way to adhere to MVC design but sometimes it may be
necessary to use the integrated view approach.

I hope I have helped you to understand how extensive this MVC application is. You can build additional capability to
manage employees and sales tickets, inventory, etc. The point is that with this framework you can easily add to the
database schema and data model to build out an entire restaurant management system using this design pattern without
intruding on the work we have done here.

 95

Chapter 8

The Reflection API

 96

PHP Reflection API is comprised of a set of methods that allow you to analyze the inner structure of classes and interfaces
very easily. It makes it simple to do such things as determine if a reflected class defines a given method or not, or if the
class declares a specified property, in addition to checking whether that property is public, protected or private.

// create instance of 'DinnerMenu' class

$dinner = new DinnerMenu();

// create instance of Reflection class and pass in 'User' class as argument

$reflect_dinner = new ReflectionClass('DinnerMenu');

// get name of reflected class

echo $reflect_dinner->getName();

OUTPUT:

DinnerMenu

As you can see above, I first created an instance of the DinnerMenu class only for illustrative purposes, and second, a new
reflector object has been engendered from the native “ReflectionClass” class. This one is the backbone of the entire
reflection API. It takes as an as input argument the name of the class that needs to be reflected.

In this example, the string “DinnerMenu” has been passed to the constructor of the “ReflectionClass” class. This
process returns a reflector object that will allow you to retrieve valuable information about the “DinnerMenu” class.

Since I’m just starting to explore the reflection API, the first thing that the above example does is invoke a method called
“getName(),” which returns the name of the reflected class. Using the getName() method of the Reflection Class may seem
pointless at first since we already new the name of the reflected class but there may be situations where the name of the
reflected class will not be known in advance. In this example we used the getName() method as an introduction to the
methods of the Reflection Class. Let’s look at other methods that will allow us to get additional information about that
class. The ones that will be discussed in the following section will return the name of the constant defined within the
“DinnerMenu” class.

Now let’s look at how to use a couple of additional methods to get the names and values of the constants declared by the
reflected class.

// create instance of 'DinnerMenu' class

$dinner = new DinnerMenu();

// create instance of Reflection class and pass in 'User' class as argument

$reflect_dinner = new ReflectionClass('DinnerMenu');

// get constant in reflected class

echo $reflect_dinner->getConstant('id');

OUTPUT:

3

// get an array of constants in reflected class

print_r($reflect_dinner->getConstants());

OUTPUT:

Array ([id] => 3)

It is apparent in the example above that retrieving the values assigned to the constants defined by a given class is only a
matter of calling the “getConstant()” and “getConstants()” methods of the reflection API, and nothing else. The first of
these methods takes the name of the constant that needs to be parsed, while the second one simply returns an array of
constants, populated with their corresponding values.

// create instance of 'DinnerMenu' class

$dinner = new DinnerMenu();

// create instance of Reflection class and pass in 'User' class as argument

$reflect_dinner = new ReflectionClass('DinnerMenu');

 97

Reflection::export($reflect_dinner);

OUTPUT:

Class [<user> final class DinnerMenu extends LunchMenu implements AdjustPortion, AdjustPrice] {

 @@ C:\temp\restaurant.php 222-269

 - Constants [1] {

 Constant [integer id] { 3 }

 }

 - Static properties [1] {

 Property [public static $title]

 }

 - Static methods [0] {

 }

 - Properties [0] {

 }

 - Methods [12] {

 Method [<user, prototype AdjustPortion> public method setDinnerPortion] {

 @@ C:\temp\restaurant.php 227 - 235

 - Parameters [1] {

 Parameter #0 [<required> $menuitemServingSize]

 }

 }

 Method [<user, prototype AdjustPrice> public method setDinnerPrices] {

 @@ C:\temp\restaurant.php 237 - 245

 - Parameters [1] {

 Parameter #0 [<required> $menuitemPrice]

 }

 }

 Method [<user, overwrites Menu, prototype Menu> public method GetAllMenuItems] {

 @@ C:\temp\restaurant.php 248 - 265

 - Parameters [1] {

 Parameter #0 [<required> $menuid]

 }

 }

 Method [<user, prototype AdjustPrice> public method setHappyHourDrinkPrices] {

 @@ C:\temp\restaurant.php 267 - 267

 - Parameters [1] {

 Parameter #0 [<required> $menuitemObject]

 }

 }

 Method [<user, inherits Menu> public method setMenuID] {

 @@ C:\temp\restaurant.php 124 - 124

 - Parameters [1] {

 Parameter #0 [<required> $menuid]

 }

 }

 Method [<user, inherits Menu> public method getMenuID] {

 @@ C:\temp\restaurant.php 125 - 125

 }

 Method [<user, inherits Menu> public method setMenuItemID] {

 @@ C:\temp\restaurant.php 127 - 127

 - Parameters [1] {

 Parameter #0 [<required> $menuitemid]

 }

 }

 Method [<user, inherits Menu> public method getMenuItemID] {

 @@ C:\temp\restaurant.php 128 - 128

 }

 98

 Method [<user, inherits Menu> public method setMenuName] {

 @@ C:\temp\restaurant.php 130 - 130

 - Parameters [1] {

 Parameter #0 [<required> $menuname]

 }

 }

 Method [<user, inherits Menu> public method getMenuName] {

 @@ C:\temp\restaurant.php 131 - 131

 }

 Method [<user, inherits Menu> public method setDescription] {

 @@ C:\temp\restaurant.php 133 - 133

 - Parameters [1] {

 Parameter #0 [<required> $description]

 }

 }

 Method [<user, inherits Menu> public method getDescription] {

 @@ C:\temp\restaurant.php 134 - 134

 }

 }

}

Now let’s try the same procedure on the ReflectionClass itself so we can gain full insight into the rest of the methods that
the PHP5 Reflection API offers:

$see_inside_reflection_class = new ReflectionClass(ReflectionClass);

Reflection::export($see_inside_reflection_class);

OUTPUT:

Class [<internal:Reflection> class ReflectionClass implements Reflector] {

 - Constants [3] {

 Constant [integer IS_IMPLICIT_ABSTRACT] { 16 }

 Constant [integer IS_EXPLICIT_ABSTRACT] { 32 }

 Constant [integer IS_FINAL] { 64 }

 }

 - Static properties [0] {

 }

 - Static methods [1] {

 Method [<internal:Reflection> static public method export] {

 - Parameters [2] {

 Parameter #0 [<required> $argument]

 Parameter #1 [<optional> $return]

 }

 }

 }

 - Properties [1] {

 Property [<default> public $name]

 }

 - Methods [40] {

 Method [<internal:Reflection> final private method __clone] {

 }

 Method [<internal:Reflection, ctor> public method __construct] {

 - Parameters [1] {

 Parameter #0 [<required> $argument]

 }

 }

 Method [<internal:Reflection> public method __toString] {

 }

 Method [<internal:Reflection> public method getName] {

 }

 99

 Method [<internal:Reflection> public method isInternal] {

 }

 Method [<internal:Reflection> public method isUserDefined] {

 }

 Method [<internal:Reflection> public method isInstantiable] {

 }

 Method [<internal:Reflection> public method getFileName] {

 }

 Method [<internal:Reflection> public method getStartLine] {

 }

 Method [<internal:Reflection> public method getEndLine] {

 }

 Method [<internal:Reflection> public method getDocComment] {

 }

 Method [<internal:Reflection> public method getConstructor] {

 }

 Method [<internal:Reflection> public method hasMethod] {

 - Parameters [1] {

 Parameter #0 [<required> $name]

 }

 }

 Method [<internal:Reflection> public method getMethod] {

 - Parameters [1] {

 Parameter #0 [<required> $name]

 }

 }

 Method [<internal:Reflection> public method getMethods] {

 - Parameters [1] {

 Parameter #0 [<optional> $filter]

 }

 }

 Method [<internal:Reflection> public method hasProperty] {

 - Parameters [1] {

 Parameter #0 [<required> $name]

 }

 }

 Method [<internal:Reflection> public method getProperty] {

 - Parameters [1] {

 Parameter #0 [<required> $name]

 }

 }

 Method [<internal:Reflection> public method getProperties] {

 - Parameters [1] {

 Parameter #0 [<optional> $filter]

 }

 }

 Method [<internal:Reflection> public method hasConstant] {

 - Parameters [1] {

 Parameter #0 [<required> $name]

 }

 }

 Method [<internal:Reflection> public method getConstants] {

 }

 100

 Method [<internal:Reflection> public method getConstant] {

 - Parameters [1] {

 Parameter #0 [<required> $name]

 }

 }

 Method [<internal:Reflection> public method getInterfaces] {

 }

 Method [<internal:Reflection> public method getInterfaceNames] {

 }

 Method [<internal:Reflection> public method isInterface] {

 }

 Method [<internal:Reflection> public method isAbstract] {

 }

 Method [<internal:Reflection> public method isFinal] {

 }

 Method [<internal:Reflection> public method getModifiers] {

 }

 Method [<internal:Reflection> public method isInstance] {

 - Parameters [1] {

 Parameter #0 [<required> $object]

 }

 }

 Method [<internal:Reflection> public method newInstance] {

 - Parameters [1] {

 Parameter #0 [<required> $args]

 }

 }

 Method [<internal:Reflection> public method newInstanceArgs] {

 - Parameters [1] {

 Parameter #0 [<optional> array $args]

 }

 }

 Method [<internal:Reflection> public method getParentClass] {

 }

 Method [<internal:Reflection> public method isSubclassOf] {

 - Parameters [1] {

 Parameter #0 [<required> $class]

 }

 }

 Method [<internal:Reflection> public method getStaticProperties] {

 }

 Method [<internal:Reflection> public method getStaticPropertyValue] {

 - Parameters [2] {

 Parameter #0 [<required> $name]

 Parameter #1 [<optional> $default]

 }

 }

 Method [<internal:Reflection> public method setStaticPropertyValue] {

 - Parameters [2] {

 Parameter #0 [<required> $name]

 Parameter #1 [<required> $value]

 }

 }

 Method [<internal:Reflection> public method getDefaultProperties] {

 }

 101

 Method [<internal:Reflection> public method isIterateable] {

 }

 Method [<internal:Reflection> public method implementsInterface] {

 - Parameters [1] {

 Parameter #0 [<required> $interface]

 }

 }

 Method [<internal:Reflection> public method getExtension] {

 }

 Method [<internal:Reflection> public method getExtensionName] {

 }

 }

}

As you scroll past all of the methods available you will see the getName(), getConstant(), and getConstants() methods that
we previously discussed. It would be beneficial to just play with these methods on your own to become more acquainted
with them. As you will discover, they can be a very helpful and powerful utility in unit testing.

 102

Chapter 9

The PEAR Library

 103

PEAR stands for PHP Extension and Application Repository, which is a framework and distribution
system for reusable PHP components and classes. Aside from the DB abstraction packages, PEAR
library contains huge amount of useful classes for work with XML, CURL etc. Using PEAR can save
you great amount of time to code something that other people already coded, tested, and used. For
example, if you need a HTML form validation routine, PEAR has it in its Validate Package. The PEAR
repository is centrally managed at http://pear.php.net, so when you use an official PEAR package you
can be sure of it’s quality and reliability.

Full list of maintained packages is available here.

Install PEAR in a Windows Zend Framework Environment

1. Open this page in any browser http://pear.php.net/go-pear and save it as a PHP file in C:\Program
Files\Zend\Apache2\htdocs\go-pear.php

2. Open a browser and go to http://localhost/go-pear.php

Figure 10-1. Go-PEAR Installation Settings

3. When installing PEAR make sure you set:

“1. Installation prefix ($prefix)” = “C:\Program Files\Zend\ZendServer\bin”

 104

4. Add the PEAR installation path (C:\Program Files \Zend\ZendServer\bin\PEAR) to your
“Path” environment variable located in MyComputer(right-click)->Properties->Advanced System
Settings->Environment Variables. Name the variable “PEAR”.

Figure 10-2. Go-PEAR Installer Progress Page

5. Go to C:\Program Files\Zend\ZendServer\etc\php.ini and add the PEAR path to your include path

[Zend]

include_path=”.; C:\Program

Files\Zend\ZendServer\share\ZendFramework\library;C:\Program

Files\Zend\zendserver\bin\PEAR”

 105

Figure 10-3. Modified php.ini File

6. RESTART your PC

Install PEAR in a Windows XAMPP Environment

1. Go to folder c:\xampp\php and find the file pear.bat.

2. Open that file in your text editor. Find the following line in that file.

IF “%PHP_PEAR_INSTALL_DIR%”==”" SET “PHP_PEAR_INSTALL_DIR=\xampp\php\pear”

3. Add following line above this line.

SET “PHP_PEAR_INSTALL_DIR=C:\xampp\php\PEAR”

4. Now include c:\xampp\php to PATH environment variable.

5. In windows vista you can find it here.

Start->Control Panel->System and Maintenance->System->Advanced System Settings-
>Environment Variable

6. Now go to command prompt and type command pear. You will see all the possible options for that
command.

7. Use following command to install pear package.

 106

pear install -o 'path of package'

Install PEAR in a Windows WAMP Environment

1. Open a command prompt

2. Go to your PHP folder (ex: c:\wamp2\bin\php\php5.9.2-2)

3. Run "go-pear" to install PEAR

Install PEAR on Mac OS

Instead of upgrading Mac OS X's PEAR install, install your own copy in /usr/local/.

Open /Applications/Utilities/Terminal.app and enter this command:

 $ cd /usr/local

Next, we begin the PEAR installation process. Enter this command into the Terminal:

 $ curl http://pear.php.net/go-pear | sudo php

Enter your administrator password if prompted and answer any questions that follow. You should be okay if you accept
the default answers for each question. When the script finishes, PEAR should be installed in /usr/local/bin/. The

PEAR library should be accessible at /usr/local/PEAR/.

Update system PATH

Now we need to add our custom pear install to our system PATH. Create or edit your bash profile in vi (or TextMate):

 $ vi ~/.bash_profile

Ensure this file includes the following line of text:

 PATH=/usr/local/bin:$PATH

Save the file and restart the Terminal application for this change to take effect. Next, we should verify that pear works.

Run this command in the Terminal:

 which pear

This command should respond with: /usr/local/bin/pear.

Update PHP include path

Now we need to tell PHP where our PEAR library is located by adding pear to the PHP include path in the /etc/php.ini
file.

This file does not exist by default on Mac OS X 10.6. To create this file, run the following command in the Terminal:

 $ sudo cp /etc/php.ini.default /etc/php.ini

 107

Next, we need to edit /etc/php.ini file in vi or TextMate and update the PHP include path. Locate the following line in
/etc/php.ini:

 ;include_path = ”/php/includes”

Remove the ”;” from the beginning of the line and add the PEAR library path.

 include_path = ”/usr/local/PEAR:/php/includes”

Save /etc/php.ini. Restart the Apache web server by unchecking and rechecking System Preferences > Sharing > Web
Sharing.

Next, view http://localhost/~[your_user_name]/index.php in a web browser. Search for “include_path” and verify the
path now includes ”/usr/local/PEAR”. PEAR is now installed.

Install PEAR on Linux

PEAR packages are installed in a configurable location. On a Linux (or Unix) system this will usually be
/usr/local/lib/php

Type the command at the command line:

$ pear

If you get:

$ pear – command not found

then it means PEAR is not installed in your Linux server. To install it just follow the steps below at the command prompt.

Download the installation php file from http://pear.php.net/go-pear.

$ wget http://pear.php.net/go-pear

Rename to php file

$ cp go-pear go-pear.php

Run the php script from command line.

$ php go-pear.php

and you will see the installation begin. Once the binary is installed, you can install php various extensions using this
command.

$ pear install package

 108

Using PEAR - EXAMPLE:

Text -> CAPTCHA_Numeral

Figure 10-4. PEAR Packages Page

Figure 10-5. PEAR Packages – Text Packages Page

 109

Figure 10-6. PEAR Text_CAPTCHA_Numeral Install Page

Figure 10-7. PEAR Text_CAPTCHA_Numeral Install Command Prompt Command

Figure 10-8. PEAR Text_CAPTCHA_Numeral Installation Message

 110

Figure 10-9. PEAR Text_CAPTCHA_Numeral Documentation Page

//test_captcha.php --
<?php

require_once 'Text/CAPTCHA/Numeral.php';

$numcap = new Text_CAPTCHA_Numeral;

if (isset($_POST['captcha']) && isset($_SESSION['answer'])) {

 if ($_POST['captcha'] == $_SESSION['answer']) {

 $errors[] = 'Ok... You might be human...';

 } else {

 $errors[] = 'You are dumb or not human';

 }

}

 if (!empty($errors)) {

 foreach ($errors as $error) {

 print "<h1>$error</h1>
";

 }

 }

 print '

 <form name="capter" action="test_captcha.php?page=liveExample" method="post">

 <table>

 <tr>

 <th>What is this result?: '.$numcap->getOperation().'</th>

 <td><input type="text" value="" name="captcha" /></td>

 </tr>

 <tr>

 <th/>

 <td><input type="submit" value="Verify I am Human" /></td>

 </tr>

 </form>

 ';

 $_SESSION['answer'] = $numcap->getAnswer();

?>

 111

Figure 10-10. PEAR Text_CAPTCHA_Numeral Browser Output

 112

Chapter 10

Unit Testing with PHPUnit

 113

Unit Testing with PHPUnit

Testing your software is imperative however waiting until just before a release to do it can bring a plethora of headaches in
and of itself. Yes, I said a plethora and I do know what a plethora is in case there are any Three Amigos fans reading this.
Functional tests are a test-just-prior-to-release approach that many developers are familiar with, especially user
acceptance testing which usually begins with a run through of the features of the user interface. Problems that are detected
during user acceptance tests can be expensive to fix and can delay the release of your software, especially for poorly
organized applications that are comprised of tightly coupled code. Change requests can be equally as difficult and costly to
implement when the developer is relying on functional tests to verify that a change has been implemented properly.

The point is that all programmers make mistakes but the better programmers use tests to detect their mistakes as soon as
possible. The sooner you test for a mistake, the greater your chance of finding it and the less it will cost to find and fix.
This explains why leaving testing until just before releasing the software or limiting your test to simply checking to see that
your program behaving as expected is inefficient and can be conducive to problems. Many errors slip past this kind of
testing and emerge in production causing disruptions and utter embarrassment for the developer.

The most effective way to prevent errors from sneaking into production is to catch them early on in development by
performing a battery of tests using runnable code fragments that automatically test the correctness of parts, or units, of
the software. These runnable code fragments are called unit tests. Automating unit tests within the structure of a unit
testing software framework can assure that your code modules will work as intended and without errors in production.

PHPUnit is a unit testing software framework for PHP and it supports the development of object-oriented PHP
applications using the concepts and methods of Design-by-Contract development. It is one of the xUnit family of
frameworks that which includes JUnit for Java and NUint for .NET.

PHPUnit was developed by Sebastian Bergmann and is not to be confused with PHP Unit Testing Framework which was
developed by Ed Heal and released in April of 2011. Although there are other testing frameworks for PHP, PHPUnit is the
de-facto standard for unit testing in PHP projects and will be the only one we will review.

Installing PHPUnit

PHPUnit should be installed using the PEAR (PHP Extension and Application Repository) Installer.

Install PHPUnit on Windows on Zend Framework Environment

Before you start delete everything from C:\Users\YOUR_USER_NAME\AppData\Local\Temp\

1. Open a cmd window. You might need to Run As Administrator

2. Run each of the following commands SEPARATELY (and each only once!):

pear channel-discover pear.phpunit.de

pear channel-discover components.ez.no

pear channel-discover pear.symfony-project.com

pear clear-cache

3. Now run:

pear install phpunit/PHPUnit

 114

Install PHPUnit on Windows on XAMPP Environment

These procedures are assuming xampp is installed to C:\xampp
1. Open a command prompt and go to C:\xampp\php
2. Run each of the following commands SEPARATELY (and each only once!):

pear update-channels

pear upgrade

pear channel-discover components.ez.no

pear channel-discover pear.symfony-project.com

pear channel-discover pear.phpunit.de

pear clear-cache

pear install --alldeps phpunit/PHPUnit

Note:
You may have to edit "memory_limit" in your php.ini if you get some sort of memory error, just set it to something really
large, then back when your done.

Install PHPUnit on Mac OS X

To install PHPUnit on a Mac OS X assuming that you followed the PEAR installation procedures for Mac OS in Chapter 9,
simply run this command in the Terminal:

$ sudo pear channel-discover pear.phpunit.de

Next, run this command in the Terminal:

$ sudo pear install phpunit/PHPUnit

That’s it. PHPUnit is installed and located at /usr/local/PEAR/PHPUnit/. You can now include PHPUnit in your PHP
scripts with this line:

require_once 'PHPUnit/Framework.php';

Install PHPUnit on Linux

From the command line, enter the following commands:

$./bin/pear channel-discover pear.phpunit.de

$./bin/pear channel-discover components.ez.no

$./bin/pear channel-discover pear.symfony-project.com

$./bin/pear install phpunit/PHPUnit

Test fixtures

A test fixture refers to the fixed state or set of preconditions used as a baseline for running tests, it is essentially a dataset
created exclusively for testing purposes. It is also known as a test context. The developer should set up a known good state
before the tests, and return to the original state after the tests. The purpose of a test fixture is to ensure that there is a well
known and fixed environment in which tests are run so that results are repeatable. An example of a fixture in general is
erasing a hard disk and installing a known clean operating system or loading a test database with a specific, known set of
data. You would never want to use a production database for unit testing because the tests may alter the data. Fixtures,
such as a test database, should be loaded before each test suite is executed.

 115

Test Phases

Setup – Setting up the test fixture
Exercise – Interact with the system under the test
Verify – Determine whether or not the expected outcome has been obtained
Tear Down – Tear down the test fixture to return to the original state.

Writing Test Cases

Writing test cases with PHPUnit is very simple. You just need to include

the PHPUnit/Framework.php file, declare a class that

extends PHPUnit_Framework_TestCase and then have all your testing functions starting with

the name "test" and use $this->assertTrue to check whether the condition is met. The following

shows a complete but very simple example using PHPUnit.

<?php

//test_assertion.php

class SampleTest extends PHPUnit_Framework_TestCase {

 private $x;

 private $y;

 public function setup() {

 $this->x = 4;

 $this->y = '4';

 }

 public function testEqual() {

 if (($this->x == $y) && ($this->x!= NULL) && ($this->y!= NULL)) {

 echo "$x is equal to $y";

}

 }

 public function testIdentical() {

 if (($this->x === $y) && ($this->x!= NULL) && ($this->y!= NULL)) {

 echo "$x is identical to $y";

}

 }

 public function teardown() {

 $this->x = '';

 $this->y = '';

 }

}

?>

The setup() and teardown() methods serve to initialize and clean up test fixtures.

Assertion Methods
An assertion is a method that allows you to check your assumptions about an aspect of your system. A typical way to use
an assertion is to define an expectation about the outcome of a code statement or segment that is under test. If the
outcome of a test is not what was expected then the test fails and a warning message is generated. Calls to assertion
methods also help document how the system under test is supposed to behave.

 116

Let’s modify the example test case above and use an assertion method instead:

<?php

//test_assertion.php

class SampleTest extends PHPUnit_Framework_TestCase {

 private $x;

 private $y;

 public function setup()

 {

 $this->x = 3;

 $this->y = '7';

 }

 public function testEqual() {

 $this->assertTrue($this->x == $this->y);

 }

 public function testIdentical() {

 $this->assertTrue($this->x === $this->y);

 }

 public function teardown() {

 $x = '';

 $y = '';

 }

}

?>

All assertion methods can take an optional description as a last parameter. This is to label the displayed result with. If
omitted a default message is sent instead, which is usually sufficient. This default message can still be embedded in your
own message if you include "%s" within the string. In this case all the assertions return true on a pass or false on failure.

Figure 11-1. PHPUnit SampleTest: Failed on Equality Assertion

 117

Let’s test these conditions again using the assertEqual() and assertSame() methods:

<?php

//test_assertion.php

class SampleTest extends PHPUnit_Framework_TestCase {

 private $x;

 private $y;

 public function setup()

 {

 $this->x = 3;

 $this->y = '7';

 }

 public function testEqual() {

 $this->assertEquals($this->x, $this->y, ‘Failed! Arguments not Equal!);

 }

 public function testIdentical() {

 $this->assertSame($this->x, $this->y, ‘Failed, Arguments not Identical!’);

 }

 public function teardown() {

 $x = '';

 $y = '';

 }

}

?>

Figure 11-2. PHPUnit SampleTest: Failed on Identical Assertion

 118

Now let’s set $x and $y equal to each other but make them different types and test that they are not identical:

<?php

//test_assertion.php

class SampleTest extends PHPUnit_Framework_TestCase {

 private $x;

 private $y;

 public function setup()

 {

 $this->x = 3;

 $this->y = ‘3’;

 }

 public function testEqual() {

 $this->assertTrue($this->x == $this->y);

 }

 public function testIdentical() {

 $this->assertTrue($this->x === $this->y);

 }

 public function teardown() {

 $x = '';

 $y = '';

 }

}

Figure 11-3. PHPUnit SampleTest: Failed on Identical Assertion

 119

Now let’s run this one last time setting $x = 3 and $y = 3 so that they are equal and of the same type:

<?php

//test_assertion.php

class SampleTest extends PHPUnit_Framework_TestCase {

 private $x;

 private $y;

 public function setup()

 {

 $this->x = 3;

 $this->y = 3;

 }

 public function testEqual() {

 $this->assertTrue($this->x == $this->y);

 }

 public function testIdentical() {

 $this->assertTrue($this->x === $this->y);

 }

 public function teardown() {

 $x = '';

 $y = '';

 }

}

?>

Figure 11-4. PHPUnit SampleTest: Passed.

 120

Below is a list of built in PHPUnit assertion methods:

assertArrayHasKey()

assertClassHasAttribute()

assertClassHasStaticAttribute()

assertContains()

assertContainsOnly()

assertContainsOnlyInstancesOf()

assertCount()

assertEmpty()

assertEqualXMLStructure()

assertEquals()

assertFalse()

assertFileEquals()

assertFileExists()

assertGreaterThan()

assertGreaterThanOrEqual()

assertInstanceOf()

assertInternalType()

assertJsonFileEqualsJsonFile()

assertJsonStringEqualsJsonFile()

assertJsonStringEqualsJsonString()

assertLessThan()

assertLessThanOrEqual()

assertNull()

assertObjectHasAttribute()

assertRegExp()

assertStringMatchesFormat()

assertStringMatchesFormatFile()

assertSame()

assertSelectCount()

assertSelectEquals()

assertSelectRegExp()

assertStringEndsWith()

assertStringEqualsFile()

assertStringStartsWith()

assertTag()

assertThat()

assertTrue()

assertXmlFileEqualsXmlFile()

assertXmlStringEqualsXmlFile()

assertXmlStringEqualsXmlString

Table 11-1. PHPUnit Assertion Methods

Testing Data from HTML Form Submissions

In the restaurant menu application that we developed, recall that we created a form to load menuitem data into the
database using the predefined $_POST variable which is an array that collects the values from a form.

Inevitably you will have to work with forms when developing in PHP. It follows that you will have to test form
submissions, or more specifically you will need to test GET and POST methods of transferring data in the arrays $_GET
and $_POST. Let’s take a look at the idea of dependency injection. It is best practice for you to feed your code what it
needs as opposed to it getting the data it needs. Here's an example of the difference:

 121

Example without dependency injection:

function AddMenuItem1() {

 foreach($_POST as $form_element => $val) {

 // code to process $val

 }

}

AddMenuItem1();

Example with dependency injection:

function AddMenuItem2(array &$formData) {

 foreach($formData as $form_element => $val) {

 // code to process $val

 }

}

AddMenuItem2($_POST);

See the difference? In your PHPUnit test you can pass AddMenuItem2() an associative array of your choice; you've

injected the dependency. Whereas addMenuItem1() is coupled with $_POST. $_POST and $_GET are assoc

arrays anyways so in your production code you can pass $_GET or $_POST to your function but in your unit tests you
will have to hard code some expected data.

Unit test example:

function testAddMenuItem() {

 $fakeFormData = array ('itemname'=>'Ice Tea', 'description'=>'tea with ice', 'servingsize'=>'16 oz',

'price'=>'$1.39');

 AddMenuItem($fakeFormData);

 // assert something...

}

Test suites
A test suite is a set of tests that all share the same fixture. The order of the tests shouldn't matter. In the test_assertion.php
example above we actually performed two simple tests that shared the same setup() fixture that assigned a value to $x and
$y. This is an example of a very simple test suite.

Mocks and Stubs

Stubbing is the practice of replacing an object with a test double that returns configured return values.

Mocking is the practice of replacing an object with a test double that verifies behavior. Mock objects are used in unit
testing to imitate the behavior of real objects in test cases. By using them the functionality of the object you are
implementing is easier to test. Mock objects are useful when the real implementation of one or more dependencies of an
object has not been realized yet or one ore more of the dependencies of an object depends on factors that are difficult to
simulate. An example of both of these cases is testing the interaction between your application and a database. Typically
you would probably call on a method or some form of data access object, but what if the database has not been setup yet?
Or what if the there was no data available or the code that queries the database hasn’t been written yet? A mock data
access object simulates the real data access object by returning some pre-defined values. This frees you from the trouble of
having to setup the database, load and then look for test data or write the code that queries the database. In the case of an
imaginary database connection mocks can test that the query, say SQL, was correctly formed by the object that is using the
connection.

Create a mock class

Recall our abstract Menu class from previous chapters:

<?php

abstract class Menu

{

 122

 private $menuid;

 private $parentid;

 private $menuitemid;

 private $menuname;

 private $description;

 public function setMenuID($menuid){$this->menuid = $menuid;}

 public function getMenuID(){return $this->menuid;}

 public function setMenuItemID($menuitemid){$this-> menuitemid = $menuitemid;}

 public function getMenuItemID(){return $this-> menuitemid;}

 public function setMenuName($menuname){$this->menuname = $menuname;}

 public function getMenuName(){return $this->menuname;}

 public function setDescription($description){$this->description= $description;}

 public function getDescription(){return $this->description;}

 function getAllMenuItems($menuid)

 {

 $connection = Database::Connect();

 $this->query = "select mitm.*, mi.itemname, mi.description,

mi.price, mi.servingsize

from `menuitemtomenu` as mitm

left join `menuitem` as mi

on mitm.menuitemid = mi.menuitemid

where mitm.menuid = $menuid";

 $menuitemList = Array();

 $cursor = Database::Reader($this->query, $connection);

 while ($row = Database::Read($cursor))

 {

 $menuitem = new MenuItem;

 $menuitem->menuitemid = $row['menuitemid'];

 $menuitem->itemname = $row['itemname'];

 $menuitem->price = $row['price'];

 $menuitem->description = $row['description'];

 $menuitemList[] = $menuitem;

 }

 return $menuitemList;

 }

}

?>

Let’s use a stub to simulate our Menu class in a test class called MenuTest():

<?php

require_once('/path/to/MenuModel.php');

class MenuTest extends PHPUnit_Framework_TestCase

{

 public function testConcreteMethod()

 {

 $stub = $this->getMockForAbstractClass('Menu');

 $result = array("menuitemid"=>"34",

 "itemname"=>"Nachos",

 "price"=>"$5.99",

 "description"=>"Ground Steak with peppers and onions layered with 5 different cheeses")));

 $stub->expects($this->any())

 ->method('getAllMenuItems')

 ->will($this->returnValue($result));

 $this->assertNotNull($stub->getAllMenuItems('3'));

 }

}

?>

In the example above I called the PHPUnit_Framework_Testcase method getMock(), passing it “Menu” which is the
name of the class I wish to mock. This method dynamically generates a class and instantiates an object from it. I then
store this mock object in $stub. We then override the getAllMenuItems method. These few lines are the real key:

 123

<?php

$stub->expects($this->any())

->method(' getAllMenuItems ')

->will($this->returnValue($results));

?>

These three lines, referred to as the fluent interface, tell the stub object that anytime the getAllMenuItems method is

called on it, it should go ahead and return the value in $result instead. Mock (and Stub) objects automatically

generated by PHPUnit have an expect() method as you can see above. This method requires a matcher object which
defines the number of times a method should be called, or the cardinality of the expectation. In the example above the
any() convenience method was used which tells the expect() method that the match fails unless zero or more calls are
made to the corresponding method. This is useful for stub objects that return values but don’t test invocations.

Here are some TestCase Matcher methods:

TestCase Method Description
any() Zero or more calls are made to the corresponding method

never() No calls are made to the corresponding method

atLeastOnce() One or more calls are made to the corresponding method

Once() Only one call is made to the corresponding method

exactly($num) $num calls are made to the corresponding method

at($num) A call made to the corresponding at $num index

Table 11-2. TestCase Matcher Methods

Let’s revisit our refactored MenuItem class from Chapter 6:

class MenuItem

{

 // constructor (not implemented)

 public function _construct(){}

 // set undeclared property

 function __set($property, $value)

 {

 $this->$property = $value;

 }

 // get defined property

 function __get($property)

 {

 if (isset($this->$property))

 {

 return $this->$property;

 }

 }

}

Now let’s set up a test class for it to mock it’s behavior:

<?php

class MenuItemTest extends PHPUnit_Framework_TestCase

{

 public function testPHPUnitMock()

 {

 $mock = $this->getMock('MenuItem');

 //NOTE: this uses at() instead of once()

 $mock->expects($this->at(0))

 ->method('__set')

 ->with('itemname', 'Cajun Curly Fries');

 //NOTE: this uses at() instead of once()

 $mock->expects($this->at(1))

 ->method('__set')

 ->with('price', '$2.99');

 $mock->__set('itemname', 'Cajun Curly Fries');

 $mock->__set('price', '$2.99');

 124

 }

}

?>

Running PHPUnit from Eclipse Without Plug-ins

PHPUnit can be run from Eclipse as an alternative to running it from the command-line. Many developers have difficulty
in setting up PHPUnit on Eclipse using plug-ins. This section will provide you with some quick and simple instructions on
how to run PHPUnit from Eclipse without the hassle of using plug-ins.

First of all, open Eclipse. We will set up a unit test for our restaurant menu project. All of our code for the restaurant
project is in a folder called “source” in our project workspace. Similarly, we need to create a folder for our unit tests so let’s
create a folder called “test” in our project workspace.

Figure 11-5. Eclipse External Tools Configuration Menu Option

Figure 11-6. Eclipse External Tools Configuration – Select New Configuration

 125

Figure 11-7. Eclipse External Tools Configuration – Configure PHPUnit Test Tool

On Macs the path to the phpunit executable is usually /usr/local/bin/phpunit.exe.

The goal of this chapter is to get you acquainted with PHPUnit and some of it’s important features. For more detailed
information please refer to the official PHPUnit documentation at:
http://www.phpunit.de/manual/current/en/phpunit-book.pdf . French and Japanese versions of this book are
also available at www.phpunit.de.

 126

Chapter 11

Source Code Management with Subversion

 127

An important element of the modern software development process is source control management (or version control).
Cooperating developers commit their changes incrementally to a common source repository, which allows them to
collaborate on code without resorting to crude file-sharing techniques (shared drives, email, ftp, etc). Source control tools
track all prior versions of all files, allowing developers to look backward and forward in their software to determine when
and where bugs are introduced. These tools also identify conflicting simultaneous modifications made by two poorly-
communicating team members, forcing them to work out the correct solution rather than blindly overwriting one or the
other original submission.

Every developer who has been under the pressure of meeting a deadline and been in a rush to make changes to their code
has likely experienced the confusion of breaking their code and scrambling to get it back to it’s last known working state.
Without version control this kind of problem can haunt a developer more and more as the application gets bigger and
bigger especially when all the “little” details start getting added in and piling up which take up so much time and rapidly
grow the code base. This problem only gets worse when multiple developers are working on the same project that has no
version control or source control and begin stepping on each other’s toes. Nothing is worse then opening a source file and
feeling dumbfounded and confused as to why all the hard work you did the day before is not there anymore and the code is
much different than it was the last time you touched it and you are in the dark as to what has happened.

The purpose of Subversion (often abbreviated SVN) is to address this problem by providing a relatively simple yet
practical and free service that allows multiple developers to check out their own copies a common code base from a central
repository. The Subversion repository is a central database which contains all of a project’s version controlled files along
with their complete history. The repository resides on the machine that hosts the Subversion server. The Subversion server
supplies content to the Subversion clients (i.e.: TortoiseSVN) upon request.

This chapter will introduce you to Subversion and show you the basic command-line tools (for Unix, Mac, and Windows),
and some excellent graphical tools (e.g. the Subclipse plugin for the cross-platform Eclipse IDE; the TortoiseSVN
extension for the Windows graphical shell) needed to perform the essential tasks in Subversion. A general synopsis of
these essential tasks and SVN usage include:

• Acquiring and setting up SVN

• Creating or Importing a Project

• Managing the fundamental Subversion lifecycle (which is the following):

1. Check out a project (a directory path) from a repository.
2. In that project directory, create or edit files and subdirectories.
3. Update your local copy from the repository, picking up changes your team members may have made since

your last update.
4. Go to step 2. If you're ready to commit your changes, go to step 5.
5. Commit your changes to the repository. Go to step 2.

• Adding and Removing Files and Directories

• Exporting a Release

• Branching a Project

This chapter will elaborate on how to apply these six aspects to Windows, Mac OS, and Unix/Linux systems.

Setting Up a Subversion Server and Client on Windows

The first thing we'll do is download the latest Subversion Windows binary installer from:
http://subversion.apache.org/packages.html

Or directly from the mirror site at: http://sourceforge.net/projects/win32svn/

 128

In the Installer dialogue box, set the installation path to:

C:\SVN\

Figure 12-2. Subversion Setup on Windows – Destination Folder Dialog

Note that the installer adds C:\SVN\bin to your path, so you can launch a command prompt and start working with it
immediately.

Let's create our first source repository, which is effectively a system path.

svnadmin create "C:\SVN\repository"

Within that newly created folder, uncomment the following lines in the conf/svnserve.conf file by removing the pound
character from the start of each line:

anon-access = none
auth-access = write
password-db = passwd

Next, add some users to the conf/passwd file. You can uncomment the default harry and sally users to play with, or add
your own:

harry = harryssecret
sally = sallyssecret

As of Subversion 1.4, you can easily install Subversion as a Windows service, so it's always available. Just issue the
following command:

sc create svnserver binpath= "C:\SVN\bin\svnserve.exe --service -r c:\SVN\repository"

displayname= "Subversion" depend= Tcpip start= auto

 129

Figure 12-3. Create SVN bin path and start SVN service on Windows

It's set to auto-start so it will start up automatically when the server is rebooted. Use the following command to start the
service without re-booting:

net start svnserver

Note that the service is running under the Local System account. Normally, this is OK, but if you plan to implement
any Subversion hook scripts later, you may want to switch the service identity to an Administrator account with more
permissions. This is easy enough to do through the traditional Windows services GUI.

Figure 12-4. Windows Services Control Panel

Now let's verify that things are working locally by adding a root-level folder in source control for our new project, named
project_1.

set SVN_EDITOR=C:\windows\system32\notepad.exe

svn mkdir svn://localhost/project_1

Now, Subversion will pop up a copy of Notepad with a place for us to enter commit comments.

 130

Figure 12-5. svn-commit.tmp File – Add Comments

Enter whatever comment you like, then save and close Notepad. You'll be prompted for credentials at this point; ignore
the prompt for Administrator credentials and press enter. Use the credentials you set up earlier in the conf/passwd file.

svn mkdir svn://localhost/myproject
Authentication realm: <svn://localhost:3690>
Password for 'Administrator': [enter]
Authentication realm: <svn://localhost:3690>
Username: harry
Password for 'harry': ************

Committed revision 1.

We specified svn:// as the prefix to our source control path, which means we're using the native Subversion protocol.
The Subversion protocol operates on TCP port 3690, so be sure to open an appropriate hole in your server's
firewall, otherwise clients won't be able to connect.

You now have a working Subversion server running on your local Windows machine. Now let’s set up the client interface.

Adding Your Source Code the First Time

The next step after installing subversion on your system is to add your source code to the repository. Use the following
command to import an existing project:

svn import C://projects/trunk/proj_restaurant file:///usr/local/svnrepos/trunk -m

"initial import"

The “-m” flag is used to post a comment along with the svn command.

Creating a Copy to Work On

Now that your code is checked into the repository, the next step is to create a copy of the code for you to make changes to,
this is called the working copy. This is done using the svn checkout command.

svn checkout file:///usr/local/svnrepos/trunk C://workingcopyof_myproject

Updating and Committing Your Working Copy

Now use the working copy you just created to make your changes, build, and test. You do not have to notify Subversion
about the changes that you make to the files. It will detect this automatically. However, if you add, copy, move, or

remove any versioned files then you will need to use the corresponding svn add, copy, move, or remove command.

 131

Once you have made changes to your working copy and verified that everything is working correctly, you will need to write
your changes to the repository. You use the svn commit command to do this. This command writes the changes in your
working copy back to the repository.

commit –m ’published changes made to my working copy’

Setting up TortoiseSVN

Many developers use a shell extension called TortoiseSVN to interact with Subversion instead of using the Unix style
commands. Download the latest 32-bit or 64-bit Windows client from http://tortoisesvn.net/downloads.html and
install it. The installer will tell you to reboot, but you don't have to.

Figure 12-6. TortoiseSVN Setup Wizard Welcome Page

Figure 12-7. TortoiseSVN Setup Wizard Status Page

Now create a project folder somewhere on your drive. I used C:\project_1. Since TortoiseSVN is a shell extension, to
interact with it, you right click in Explorer. Once you've created the project folder, right click in it and select "SVN
Checkout..."

 132

Figure 12-8. Windows Explorer – Right-click Menu Options –> SVN Checkout

Type svn://localhost/project_1/ for the repository URL and click OK.

Figure 12-9. TortoiseSVN Checkout Dialog

Tortoise now associates the c:\project_1 folder with the svn://localhost/project_1 path in source control. Just about
anything you do on your local file system path can be checked back in to source control.

There's a standard convention in Subversion to start with the "TTB folders" at the root of any project, Trunk, Tags &
Branches folders.

Because Subversion uses regular directory copies for branching and tagging, the Subversion community recommends that
you choose a repository location for each project root -- the "top-most" directory which contains data related to that
project -- and then create three subdirectories beneath that root: trunk, meaning the directory under which the main
project development occurs; branches, which is a directory in which to create various named branches of the main
development line; tags, which is a collection of tree snapshots that are created, and perhaps destroyed, but never changed.

 133

Note that we can batch up as many changes as we want and check them all in atomically as one unit. Once we're done,
right click the folder and select "SVN Commit..."

Figure 12-10. Windows Explorer Right-click Menu Options -> SVN Commit

In the commit dialog, indicate that yes, we do want to check in these files, and add a comment.

Figure 12-11. TortoiseSVN Commit Dialog

You'll have to enter your server credentials here, but Tortoise will offer to conveniently cache them for you. Once the
commit completes, note that the files show up in the shell with source control icon overlays:

 134

Figure 12-12. SVN Source Control Icon Overlays

Now, right click and select "TortoiseSVN, Settings".

NOTE: Tortoise will attempt to apply source control overlays across every single folder and drive on your system. This can
lead to some frustrating file locking problems. To instruct Tortoise to apply it’s shell commands on specific folders, set this
restriction via "Icon Overlays"; look for the exclude and include paths. In this example I set the exclude path to everything,
and the include path to only my project folder(s).

Figure 12-13. TortoiseSVN – Settings Control Panel

Be aware, since Tortoise is a shell extension, setting changes may mean you need to reboot.

Adding a new file is simple with TortoiseSVN. For example, open Notepad (or your preferred text editor) and create a file
called Employee.php. Type in the following in the new file:

<?php

Class Employee { }

?>

 135

Now save Employee.php to C://project_1 and close Notepad. Using Windows Explorer, open the C://projects_1 folder
and right click on the Employee.php file and select “Add” in the TortoiseSVN menu.

Figure 12-14. Windows Explorer Right-click Menu Options->TortoiseSVN->Add

Type some comments in the comment field of the dialog that pops up next and click “Ok”

Figure 12-15. TortoiseSVN Commit Dialog

And that’s it, you have just added the new file Employee.php to the SVN repository.

 136

Exporting a Release

Figure 12-16. Windows Explorer Right-click Menu Options - TortoiseSVN->Export Option

Tagging & Branching a File

Figure 12-17. Windows Explorer Right-click Menu Options - TortoiseSVN->Branching Option

 137

Setting Up a Subversion Server and Client on Mac OS X

Download Subversion

Download and install the Subversion client from http://subversion.apache.org/packages.html . Simply scroll down
to the Mac OS X Section and select your package management system (Fink, MacPorts, openCollabNet,
WANdisco).

Unpack and Install Subversion

After the download, unpack the .dmg file. just click the .pkg-installer and install Subversion. Subversion itself doesn't
feature a graphical user interface, so you won't find any new files in your application directory after installation. Instead it
installs some command line commands into the directory :/usr/local/bin on your hard drive.

Add Subversion to Your Path

Open the Terminal, Located in /Application/Utilities and type: svn [enter] If you have an output like: Type 'svn help' for
usage after the dollar sign ($). Then svn is working correctly. To be able to call the Subversion commands from every
directory, you must add it to your path. If you don't know what that means, don't worry. Just follow the instructions.

Start by creating a new text file called '.profile', i.e. with the command line text editor pico:

$ pico .profile

Add the following line to the text file:

$ export PATH=$PATH:/usr/local/bin

Now hit Control-X, then confirm saving the file with 'y', followed by return. You have just added Subversions's location to
your path. Let Terminal read this file to know the path has changed (there's an empty space between the dots):

$. .profile

Then open another Terminal window and try again with: svn [enter]

Setting up the Subversion Repository

First we will need to set up a Subversion repository on our local computer. That is the place to store all versions of our
project. Now create your repository like this:

$ svnadmin create svnrepos

This will create a repository named ' svnrepos ' in your home directory, although svnadmin won't give you any feedback.
Check the existence of this folder by typing 'ls' in the terminal or looking for it in the Finder.

Creating a Subversion Project

Next we create our sample project. Create a new folder and an empty file named 'Employee.php' inside this folder:

$ mkdir proj_restaurant

$ touch proj_restaurant/Employee.php

 138

Let's import this project into the repository. Type in your terminal, by replacing ' your_user_name ' with your own user
name:

$ svn import proj_restaurant file:///Users/your_user_name/svnrepos/proj_restaurant -m

"Initial import"

output:
Adding Employee.php

Committed revision 1.

We have just imported the folder 'proj_restaurant' into the repository 'svnrepos'. Each version in the repository is called a
"revision" and is identified by a unique number. Always provide a short message ('-m') of the changes you made to the
repository.

Checking Out Files from Subversion

Now let’s retrieve, or “check out” a copy of our file from the repository to work on:
$ svn checkout file:///Users/your_user_name/svnrepos/proj_restaurant proj_restaurant-copy

The output will show all files added ('A') to our working copy:

A proj_restaurant-copy/Employee.php

Checked out revision 1.

Change into the working copy directory by typing:

$ cd proj_restaurant-copy

Next check the content of our working copy in the terminal:

$ ls -a1

This will output the directory including hidden files:

.

..

.svn

Employee.php

Note the hidden directory '.svn'. This holds some subversion metadata like the name of the repository, so you don't have to
type that in the future.

Updating and Committing Changes

It is time to make some changes to our file and save it back to the repository. Open 'Employee.php' from the working copy
with your favorite text editor and add the following to the file:

<?php

Class Employee{}

?>

You can then query Subversion to find out the differences between the repository and your copy:
$ svn status

 139

This will state that our file has been modified ('M'):
M Employee.php

Now we want to update the repository with the changes we made. This process is called "committing":
$ svn commit -m "Added some comments"

Output:
Sending Employee.php

Transmitting file data .

Committed revision 2.

Adding and Removing Files and Directories

Adding a File
Adding a new a new document to Subversion is easy, all you have to do is use the svn add command and then commit it. In
this example I create a new file called newfile1.php with the touch command and then simply use the svn add
subcommand to add it to the repository.

% touch /projects/proj_restaurant/newfile1.php

% svn add /projects/proj_restaurant/newfile1.php

% svn commit –m ’added new file’

Adding newfile1.php

Transmitting file date ...

Committed revision 3.

Removing a File
Removing a file from Subversion is as simple as adding one. To remove a file you use the remove subcommand.

% svn remove /projects/proj_restaurant/newfile1.php

% svn commit –m ’removed newfile1.php’

Deleting newfile1.php

Committed revision 4.

Adding a Directory
To be consistent with the standard Subversion directory structure, let’s go ahead and set up our SVN directory tree in our
repository:

$ svn add trunk/

$ svn add tags/

$ svn add branches/

Let’s also add a dummy directory for the sake of discussion:
$ svn add dummy/

Removing a Directory
Likewise, you use the remove subcommand to remove a directory from Subversion:

% svn remove dummy

D dummy

% svn commit –m ’commit to removing the images directory’

 140

Tagging & Exporting a Release

You'll recall that you created three directories for your project : trunk, branches, and tags. This is the recommended
directory layout for individual projects in Subversion.

The trunk directory is where you typically do your work. Create files here, edit them, check them in, and compile them.
Think of the trunk as your home directory for the purposes of any given project. In fact, for beginners this is probably the
only directory you'll use.

The branches and tags directories exist when you want to move on to more sophisticated parallel development. For
example, branches are copies of the code that evolve independently. On large projects this can be important when multiple
parties are making substantially different changes to the code; you probably won't need to use them in this course.

Tags, on the other hand, are more likely to be of use to you. A tag represents a snapshot of your code at a single point in
time, it’s simple a copy of your code that allows for a more human friendly naming convention. You might, for example,
set a tag on your code at the prototype stage, so you can always conveniently refer back to this version of things.

$ cd proj_restaurant/trunk

$ touch Timecard.php

$ pico Timecard.php

$ svn add Timecard.php

A Timecard.php

$ svn commit

[enter a message in your editor, save and close]

Sending Timecard.php

Transmitting file data ...

Committed revision 3.

[Maybe this is your finished initial release, so let's take a snapshot.]

$ cd ..

$ ls

branches/ tags/ trunk/

[Now we'll use "svn cp" to copy the trunk, as it exists right now,

 to a new spot underneath tags.]

$ svn cp trunk tags/release_1.0.0

A tags/release_1.0.0

$ svn commit trunk

[enter a message along the lines of "Taking a snapshot of the release

 we're turning in."]

Sending tags/release_1.0.0...

Committed revision 4.

$ ls trunk/

Timecard.php # <-- your working code; continue to develop here

$ ls tags/

release_1.0.0/

$ ls tags/release_1.0.0/

Timecard.php # <-- this version is frozen in time

$ svn export file:///Users/your_user_name/svnrepos/proj_restaurant proj_restaurant-copy

This copy is now safe to deploy on the web. It is not a working copy though, so you can't commit changes back to the repository from
this folder.

Branching & Merging a Project

Creating a Branching

First of all, you are probably wondering what a branch is. Well suppose you build an small point-of-sale application for a
store owner. You deliver it to them and they love it, so much that they show it to another business owner who decides that
they also want it. So you deliver an exact copy of the initial point-of-sale system that you built for the first store owner but
the second business owner asks you to make a few custom modifications and tweaks. The first guy, the store owner
occasionally asks for subtle enhancements as well. As time goes on you find yourself maintaining two different
applications that at one time been identical.

 141

This is the basic concept of a branch, in a nut shell it is a parallel line of development that exists independently of another
line, yet still shares a common history if you look far enough back in time. A branch always begins life as a copy of the
trunk within the repository, and moves on from there, generating its own history.

There are a couple of common types of branching which are scenario based. The first can be described as the developer
branch. In this case it is beneficial to create a branch and develop the new feature within it, later merging it all back to
the trunk. A common scenario for this is when you have a large feature to deliver, which may take some time to finish.
You can't halt all other development on the project, or commit partial changes, but on the other hand, as you develop the
new feature you do want to continue to enjoy the benefits version controlled files and directories, and making regular
commits.

The other common type of branch is known as a release branch. This is typically done when you are in the last few days
before a major release of your project. A release branch is created, and this is where all the last minute tweaks and bug
fixes are made. By working in a branch in this way, the rest of the team can continue their day-to-day development work
on the trunk, independently of what's happening in the release branch.

Creating a branch is very simple. A branch is simply a copy of the trunk, and can easily be made using the svn cp or svn

copy command, supplying it with two Subversion repository URLs. The first of these will be the address of the resource to
be branched, typically the trunk, and the second will be the desired address of the new branch.

% svn cp -m 'Making test branch' svn://localhost/usr/local/svnrepos/projects/trunk

svn://localhost/usr/local/svnrepos/projects/branches/branch_1.0.0

Committed revision 12.

There it is, your branch created and automatically committed, ready for you to check out and work with. Working with a
branch is no different from working with any versioned resource in Subversion.

Merging

Once you've created a branch, you will inevitably come to a point where you will want to integrate the changes in the
branch back into the trunk . This is known as merging, and is achieved by use of the svn merge command. This is a little
more complex than branching, but is still easy enough.

Assume that your endeavoring co-developer Dan has made some extensive changes to Employee.php. To merge all of
those changes at once, you'll need a note of those two Subversion URLs we used earlier (the URLs of both the trunk and
the branch), and you will also need a working copy of the trunk. Use the cd command to navigate into the directory which

holds that working copy, and initiate the merge using svn merge and the following syntax:

% svn merge svn://localhost/usr/local/svnrepos/projects/branches/branch_1.0.0

svn://localhost/usr/local/svnrepos/projects/trunk

U Employee.php

% svn status

M Employee.php

The above command will take all changes made in the branch_1.0.0 branch and merge them into the trunk. This time,
nothing is committed automatically. The resulting changes are actually made to the working copy, so that we can review
them first, and make sure that we're happy with them. If so, we can commit the changes with svn commit as with any
other changes to a working copy.

Another approach to merging is to specify revision numbers. Let's say Dan made some useful changes and committed
them as revisions 114 and 115, and that we want those changes to be replicated in the trunk (or in another branch), we can
pass those revision numbers to svn merge using the -r flag:

% svn merge -r 113:115 svn://localhost/usr/local/svnrepos/projects/branches/branch_1.0.0

U Employee.php

 142

% svn status

M Employee.php

Subversion is instructed to take all changes made to /branches/branch_1.0.0 between revisions 113 and 115, and copy

them all into my current working copy. Nothing is committed automatically, and you are free to review the resulting code
before committing it yourself.

Graphical User Interfaces

Many people don't like working with the terminal. They find it complicated to remember the text commands, as opposed
to clicking on buttons in applications. There is a couple of free or commercial apps available on the internet, that provide a
graphical user interface for Subversion commands.

A nice and free GUI for Mac OS X is svnX. To manage your working copies from the same application that you write your
code with, the text editor TextMate is a good choice. TextMate includes a Subversion bundle that allows you to easily
invoke most Subversion commands from the menu. Only once for setting up the repository and checking out the first
working copy, you will have to use the terminal. After that, just press Shift-Control-A to open the Subversion bundle
menu.

Setting Up a Subversion Server on a Linux Server

Unix-like operating systems most likely already have a Subversion client installed and ready to use. Verify this by typing
the following on the command line (I will be using the csh shell for this discussion):

% svn help

If you see some usage information come up then you can proceed with setting up your repository. If you do not then you
will need to download and install Subversion. Depending on your flavor of Linux or Unix, you should have access to a
simple installation program like Yum or Apt. Regardless, it is best practice to refer to your distributions documentation
before you proceed.

You can download the Subversion source code and binaries specific to your Linux or Unix system from
http://subversion.apache.org/packages.html .

Step 1:
In this example I will set up a repository in the directory /usr/local/svnrepos. You may need root privileges to write to this
directory.

% svadmin create –fs-type fsfs /usr/local/svnrepos

This command will not provide any confirmation to the command line but you can easily check to see that it created a
directory call svnrepos in the /usr/local directory.

Step 2:
Create your SVN user: Now that your repository is successfully set up, you'll need to create an svn user. Simply open the
svnserve.conf file in the editor of your choice:

% vi /usr/local/svnrepos/conf/svnserve.conf

In that file add these three lines:

anon-access = none
auth-access = write
password-db = passwd

 143

Step 3:
Now you'll need to create a password file:

% vi /usr/local/svnrepos/conf/passwd

Add a line in that file for your user in the format =

exampleuser = examplepassword

Step 4:
When you invoke svn commit, Subversion will launch your "default editor" so it can ask you to add some comments to a
text file. Let’s go ahead and set up a default editor that’s easier to use with Subervion than the vi editor such as pico or
emacs. I will use emacs in this example:

% setenv EDITOR emacs

Step 5:
For the sake of simplicity, let’s create a bare bones file named Employee.php by opening emacs (or your preferred text
editor) and adding the following text:

<?php

Class Employee

{

}

?>

Save the file as Employee.php in /projects/proj_restaurant/ or whatever directory you want to use as your project
directory.

Let’s also set up our trunk, tags, branches directory structure. This is an important convention used by Subversion and
I will explain it’s use as we go along. Fundamentally, you will do all of your work in the trunk directory. All three need to
be just beneath your project folder so if your project path looked like this:

/projects

 /proj_restaurant

It needs to be like this:

/projects

 /branches

 /tags

 /trunk

 /proj_restaurant

So cd to /projects and create the “TTB” directories:

mkdir trunk

mkdir branches

mkdir tags

Set up the same directory structure in your repository (we’ll discuss adding directories and files a little later):

% svn add trunk/

% svn add tags/

% svn add branches/

 144

The resulting directory tree will look like this:

/svnrepos

 /branches

 /tags

 /trunk

Now import your project:
This example assumes you’ve put your project file in /projects/proj_restaurant/. You can start a project anywhere you
like, just make sure the import path in the following command matches the directory path of your project files.

% svn import /projects/trunk/proj_restaurant file:///usr/local/svnrepos/trunk

Step 6:
Run the svn server as daemon:

% svnserve -d

Done! You should now have a svn server running with one project named proj_restaurant, it will contain one file called
Employee.php.

Step 7:
Try checking it out of the repository:

% svn co svn://localhost/usr/local/svnrepos/trunk/proj_restaurant

Since we set anon-access to none you should be prompted for username and password which you created in the file
/usr/local/svnrepos/conf/passwd.

Updating and Committing Changes

Let’s update our Employee.php file by adding some document level comments to the file:

<?php

/**

* This file contains the Employee class

**/

class Employee

{

}

?>

In order to check to see which files have changed before you incorporate differences locally use the status command:

% svn status –show-updates

The status command will display a list of files that an update would affect locally, now let’s go commit the changes:

% svn commit Employee.php

Your default editor (pico in this example) will be invoked on a temporary file; into this file you should type some brief
comments explaining the purpose of your change.
You'll note that Subversion responds to your check in with a message:

Sending Employee.php

 145

Transmitting file data ...

Committed revision 2.

Each committed change is assigned a monotonically-increasing revision number. (In this example, that number was 2.)
You can go back and examine any past check in with svn log by using this command:

% svn log -v –r2

The -r flag lets you pick the revision to look at; the -v flag tells you what files were touched.

Note: If you happen to invoke the svn commit but realize that you didn't really mean to commit all the files you checked
out or all the changes you made, exit your editor without adding a commit message. You will be given a chance to back out.
Once you write and save a commit message, you've lost that opportunity.

Adding and Removing Files and Directories

Adding a File

Adding a new a new document to Subversion is easy, all you have to do is use the svn add command and then commit it.

In this example I create a new file called newfile1.php with the touch command and then simply use the svn add
subcommand to add it to the repository.

% touch /projects/proj_restaurant/newfile1.php

% svn add /projects/proj_restaurant/newfile1.php

% svn commit –m ’added new file’

Adding newfile1.php

Transmitting file date ...

Committed revision 3.

Removing a File

Removing a file from Subversion is as simple as adding one. To remove a file you use the remove subcommand.

% svn remove /projects/proj_restaurant/newfile1.php

% svn commit –m ’removed newfile1.php’

Deleting newfile1.php

Committed revision 4.

Adding a Directory

You can also use the add subcommand to add a directory to Subversion:

% mkdir images

% touch images/picture1.jpg

% svn add images

A images

A images/picture1.jpg

As you can see by this simple example, the contents of the images directory are also added to Subversion.

 146

Removing a Directory

Likewise, you use the remove subcommand to remove a directory from Subversion:

% svn remove images

D images/picture1.jpg

D images

% svn commit –m ’commit to removing the images directory’

Tagging & Exporting

You'll recall that you created three directories for your project : trunk, branches, and tags. This is the recommended
directory layout for individual projects in Subversion.

The trunk directory is where you typically do your work. Create files here, edit them, check them in, and compile them.
Think of the trunk as your home directory for the purposes of any given project. In fact, for beginners this is probably the
only directory you'll use.

The branches and tags directories exist when you want to move on to more sophisticated parallel development. For
example, branches are copies of the code that evolve independently. On large projects this can be important when multiple
parties are making substantially different changes to the code; you probably won't need to use them in this course.

Tags, on the other hand, are more likely to be of use to you. A tag represents a snapshot of your code at a single point in
time, it’s simple a copy of your code that allows for a more human friendly naming convention. You might, for example,
set a tag on your code at the prototype stage, so you can always conveniently refer back to this version of things.

Allow me to illustrate the use of a tag with an example:

% cd /projects/proj_restaurant/trunk

% emacs MyPHPCode.php

% svn add MyPHPCode.php

A MyPHPCode.php

% svn commit

[enter a message in your editor, save and close]

Sending MyPHPCode.php

Transmitting file data ...

Committed revision 7.

[Maybe this is your finished initial release, so let's take a snapshot.]

% cd ..

% ls

branches/ tags/ trunk/

[Now we'll use "svn cp" to copy the trunk, as it exists right now,

 to a new spot underneath tags.]

% svn cp trunk tags/release_1.0.0

A tags/release_1.0.0

% svn commit trunk

[enter a message along the lines of "Taking a snapshot of the release

 we're turning in."]

Sending tags/release_1.0.0...

Committed revision 8.

% ls trunk/

MyPHPCode.php # <-- your working code; continue to develop here

% ls tags/

release_1.0.0/

% ls tags/release_1.0.0/

MyPHPCode.php # <-- this version is frozen in time

Now to export a clean release version of your codebase use the export subcommand:

% svn export svn://localhost/projects/proj_restaurant/tags/release_1.0.0 \ release_1.0.0

 147

Branching & Merging a Project

Creating a Branching

First of all, you are probably wondering what a branch is. Well suppose you build an small point-of-sale application for a
store owner. You deliver it to them and they love it, so much that they show it to another business owner who decides that
they also want it. So you deliver an exact copy of the initial point-of-sale system that you built for the first store owner but
the second business owner asks you to make a few custom modifications and tweaks. The first guy, the store owner
occasionally asks for subtle enhancements as well. As time goes on you find yourself maintaining two different
applications that at one time been identical.

This is the basic concept of a branch, in a nut shell it is a parallel line of development that exists independently of another
line, yet still shares a common history if you look far enough back in time. A branch always begins life as a copy of the
trunk within the repository, and moves on from there, generating its own history.

There are a couple of common types of branching which are scenario based. The first can be described as the developer
branch. In this case it is beneficial to create a branch and develop the new feature within it, later merging it all back to
the trunk. A common scenario for this is when you have a large feature to deliver, which may take some time to finish.
You can't halt all other development on the project, or commit partial changes, but on the other hand, as you develop the
new feature you do want to continue to enjoy the benefits version controlled files and directories, and making regular
commits.

The other common type of branch is known as a release branch. This is typically done when you are in the last few days
before a major release of your project. A release branch is created, and this is where all the last minute tweaks and bug
fixes are made. By working in a branch in this way, the rest of the team can continue their day-to-day development work
on the trunk, independently of what's happening in the release branch.

Creating a branch is very simple. A branch is simply a copy of the trunk, and can easily be made using the svn cp or svn

copy command, supplying it with two Subversion repository URLs. The first of these will be the address of the resource to
be branched, typically the trunk, and the second will be the desired address of the new branch.

% svn cp -m 'Making test branch' svn://localhost/usr/local/svnrepos/projects/trunk

svn://localhost/usr/local/svnrepos/projects/branches/branch_1.0.0

Committed revision 12.

There it is, your branch created and automatically committed, ready for you to check out and work with. Working with a
branch is no different from working with any versioned resource in Subversion.

Merging

Once you've created a branch, you will inevitably come to a point where you will want to integrate the changes in the
branch back into the trunk . This is known as merging, and is achieved by use of the svn merge command. This is a little
more complex than branching, but is still easy enough.

Assume that your endeavoring co-developer Dan has made some extensive changes to Employee.php. To merge all of
those changes at once, you'll need a note of those two Subversion URLs we used earlier (the URLs of both the trunk and
the branch), and you will also need a working copy of the trunk. Use the cd command to navigate into the directory which

holds that working copy, and initiate the merge using svn merge and the following syntax:

% svn merge svn://localhost/usr/local/svnrepos/projects/branches/branch_1.0.0

svn://localhost/usr/local/svnrepos/projects/trunk

U Employee.php
% svn status

M Employee.php

 148

The above command will take all changes made in the branch_1.0.0 branch and merge them into the trunk. This time,
nothing is committed automatically. The resulting changes are actually made to the working copy, so that we can review
them first, and make sure that we're happy with them. If so, we can commit the changes with svn commit as with any
other changes to a working copy.

Another approach to merging is to specify revision numbers. Let's say Dan made some useful changes and committed
them as revisions 114 and 115, and that we want those changes to be replicated in the trunk (or in another branch), we can
pass those revision numbers to svn merge using the -r flag:

% svn merge -r 113:115 svn://localhost/usr/local/svnrepos/projects/branches/branch_1.0.0

U Employee.php

% svn status

M Employee.php

Subversion is instructed to take all changes made to /branches/branch_1.0.0 between revisions 113 and 115, and copy

them all into my current working copy. Nothing is committed automatically, and you are free to review the resulting code
before committing it yourself.

Summary

With the introduction of PHP 5, object oriented programming became the center of the PHP universe. In Chapters 2
through 7 we covered the key aspects of PHP's object oriented support. We also discussed some important principles of
object oriented PHP such as coding to an interface and not to an implementation as well as how important it is to avoid
tight coupling of your code. Although we did not dig deep into design patterns we did cover how to organize a custom
application according to the Model-View-Controller design pattern. This is the de facto way to build PHP web applications
these days. In this edition of this book you were introduced to unit testing with PHPUnit and version control with SVN. In
the next addition I intend to expand on the use of PHPUnit with the Zend Framework and also introduce Git as a
distributed revision control and source code management (SCM) system. Also in this next edition I will demonstrate step-
by-step how to take the custom MVC application we developed in Chapter 8 and migrate it into the Zend Framework. We
didn’t discuss Object-Relational Mappers in this edition but I intend to cover that topic in the next edition with the
introduction to Doctrine 2. A couple of other topics that I missed in this edition but will also include in the next are PHP
namespaces and type hinting.

Be aware that PHP is a language that is still evolving and that future enhancements to the PHP language will be beset with
new object oriented features. There is no doubt that PHP has come a long way since PHP 3. In fact, of all the web sites
that use PHP, over 96% of them use PHP 5 while only 0.1% use PHP3. PHP 5 has made PHP increasingly popular which is
why it is important to learn it and stay current with it. According to W3 Tech Web Technology Surveys, PHP is used as the
server side language for 78.7% of web applications compared to other languages.

It is reasonable to expect PHP to continue to gain market share. PHP5+ is used as the development language for many
popular content management systems such as Drupal, Joomla and WordPress as well as many popular eCommerce
platforms such Magento. In the next edition of this book I will also discuss these open source systems with ample
examples and discussion on how to use and customize them. In add to that we will build another custom application, a
custom image gallery that will show you how to develop controls for pagination using the iterative design pattern.

 150

Appendix A

Bibliography

Web Resources

Eclipse: http://www.eclipse.org

JQuery: http://jquery.com

MySQL: http://www.mysql.com

MySQL Workbench 5.2 CE: http://dev.mysql.com/downloads/workbench/5.2.html

Design Patterns: http:// www.ibm.com/developerworks/library/os-php-designptrns/

PEAR: http://pear.php.net

PHP: http://www.php.net

PHPUnit: http://www.phpunit.de

Sourceforge: http://sourceforge.net/projects/win32svn/

Subversion: http://subversion.apache.org

Templates: http://www.smarty.net

TortoiseSVN: http://tortoisesvn.net/downloads.html

W3 Tech Web Technology Surveys : http://w3techs.com/technologies/details/pl-php/all/all

Zend: http://www.zend.com

Books

Dagfinn Reiersøl with Marcus Baker and Chris Shiflett. PHP in Action. Greenwich, CT: Manning Publications Co., 2007

Powers, David. PHP Object-Oriented Solutions. N.Y, N.Y. Apress, 2008

Welling, Luke and Thompson, Laura. PHP and MySQL Web Development, 4th Edition. Upper Saddle River, New
Jersey: Pearson Education, Inc, 2009

Appendix B

Setting Up Your Development Stack

If you don’t have a solution stack already, this section will guide you through the steps needed to set up an AMP stack on
your own computer. If you don’t know already, the AMP solution is a software bundle that is used as a platform to run
PHP/MySQL applications.

AMP is an acronym for:

A: Apache 2+ HTTP Web Server
M: MySQL 5.x Database Engine
P: PHP 5.x

If you load this stack on a Linux platform it is know as a LAMP stack, WAMP for Windows and MAMP for Macs and
XAMP for cross-platform.

XAMP is an acronym for:

X: cross-platform
A: Apache 2+ HTTP Web Server
M: MySQL 5.x Database Engine
P: PHP 5.x

I am going to go through the steps to load a XAMP stack onto a Windows platform using the free and open source Zend
Server Community Edition. If you are a Linux (LAMP) or Mac (MAMP) user please select the appropriate
tab and proceed with the Zend Server CE (PHP 5.3) download. This download will include the Apache web
server, MySQL database engine and PHP5.3 library and is available for download at:

http://www.zend.com/products/server-ce/downloads

 152

Figure 1-2. Zend Server CE Download Page

The full instruction guide is available at http://www.zend.com/en/products/server/resources which includes the
following system requirements in section 3:

=============================

3. System Requirements

=============================

* Supported Operating Systems, Platforms and OS versions:

 - Linux x86 and x86-64:

 - RHEL 6.x, 5.x, CentOS 5.x,6.x, OEL 5.x and Fedora 13 and above

 through RPM packages

 - SLES 10.x, 11.x and OpenSUSE 11.x, 12.x through RPM packages

 - Debian GNU/Linux 6.0/5.x, Ubuntu Linux 10.04 and above

 through DEB packages

 - Windows x86 and x86-64:

 - Windows XP SP 2 and above

 - Windows Vista (except for "Starter Edition")

 - Windows Server 2003

 - Windows Server 2008

 - Windows 7

 - Mac

 - Apple Mac OS X versions 10.6 and 10.7

 153

Install Zend Server CE (Community Edition)
After you have downloaded the Zend Server, run the installer.

Figure 1-3. Zend Server CE Installer

When prompted for the Apache port number, enter the following:

Web Server Port: 80
Zend Server Interface Port: 10081

Figure 1-4. Apache Port Number

 154

Click “Next.” Select “Custom Install” and check all options except the ones that are unchecked in following screen shot:

Figure 1-5. Zend Server CE Custom Setup

 155

Figure 1-6. Zend Server CE Installation Settings

Complete the steps available at http://localhost:10081/ZendServer/

After the installation is complete, go to C:\Program Files\Zend\ZendServer\etc\php.ini and set:
display_errors = On

display_startup_errors = On

MySQL Workbench 5.2 CE

In the installation of the Zend Server Community Edition we included phpMyAdmin. I am going to use MySQL
Workbench CE Version 5.2 as the MySQL database interface for all pertinent discussions in this book, feel free to use
which ever you prefer. phpMyAdmin is a very versatile and user friendly tool however I have discovered that occasionally
people have problems logging into it when it is installed with Zend Server CE. You can edit the username and password in
the C:\Program Files\Zend\phpMyAdmin\config.inc file however typically if you just use the username “admin” and leave
the password field blank you should be able to access it.

 156

Figure 1-7. MySQL Workbench 5.2 CE Workbench Control Panel

MySQL Workbench 5.2 CE is a comprehensive open source database design, development and administrative

tool and can be downloaded from:

http://dev.mysql.com/downloads/workbench/5.2.html

Setting Up Your Integrated
Development Environment

For the purpose of this book I will be using Eclipse for PHP Developers Version: Helios Release to run code
snippets from the examples in the following chapters. Eclipse is optional because you can execute your test PHP scripts
via your preferred browser by using the Apache path: http://localhost/mytestfile.php. Your source files will need to be
copied into the Apache htdocs directory. According to the set up that I explain in this book that path is: C:\Program
Files\Zend\Apache2\htdocs .

I you would like to go ahead and use Eclipse, you can download it from:

http://www.eclipse.org/downloads/packages/eclipse-php-developers/heliosr

Eclipse is available for Windows, Linux and Macs. On the right side of the download page you just need to click the link
that corresponds to your platform, download the zip file and extract the eclipse files to a convenient directory.

 157

Figure 1-8. Eclipse Helio PDT Start-up Icon

Double click the eclipse-php.exe icon then click “run” in the dialog that pops up:

Figure 1-9. Eclipse Helio PDT Run Dialog

Verify that the Eclipse splash screen indicates that it is the Helios version:

Figure 1-10. Eclipse Helio PDT Splash Screen

 158

Now you are ready to start coding in Eclipse. To execute a PHP script click the green “run” arrow on the tool bar then
select:

 Run As -> PHP Script

Figure 1-11. Eclipse PHP Debug Screen: Run As -> PHP Script

 159

Index

$

$_GET, 78, 86, 87, 93, 98, 99, 102, 128, 129

$_POST, 90, 91, 96, 98, 100, 118, 128, 129

$this variable, 21, 53

&

& CSS, Events, 8

.

.htaccess, 4, 77, 79

_

__call, 3, 33, 34

__clone, 36

__construct, 3, 19, 20, 22, 23, 27, 28, 30, 31, 32, 41, 48, 50, 60, 64, 79, 80, 81, 106

__destruct, 3, 31, 60

__get(), 3, 31, 32, 33, 59

__isset, 3, 31, 59

__set(), 3, 31, 32, 33, 59

__sleep, 34

__wakeup, 35

A

abstract, 3, 39, 40, 41, 42, 45, 53, 59, 61, 62, 70, 71, 81, 86, 96, 129

Access Modifiers, 3, 21

Agile development, 8

AJAX, 8

AMP, 9

anon-access, 137

any(), 130, 131

assertArrayHasKey(), 128

assertClassHasAttribute(, 128

assertClassHasStaticAttribute, 128

assertContains, 128

assertContainsOnly, 128

assertContainsOnlyInstancesOf, 128

assertCount, 128

assertEmpty, 128

assertEquals, 128

assertEqualXMLStructure, 128

assertFalse, 128

assertFileEquals, 128

assertFileExists, 128

assertGreaterThan, 128

assertGreaterThanOrEqual, 128

assertInstanceOf, 128

assertInternalType, 128

Assertion Methods, 5, 123, 128

assertJsonFileEqualsJsonFile, 128

 160

assertJsonStringEqualsJsonFile, 128

assertJsonStringEqualsJsonString, 128

assertLessThan, 128

assertLessThanOrEqual, 128

assertNull, 128

assertObjectHasAttribute, 128

assertRegExp, 128

assertSame, 128

assertSelectCount, 128

assertSelectEquals, 128

assertSelectRegExp, 128

assertStringEndsWith, 128

assertStringEqualsFile, 128

assertStringMatchesFormat, 128

assertStringMatchesFormatFile, 128

assertStringStartsWith, 128

assertTag, 128

assertThat, 128

assertTrue, 128

assertXmlFileEqualsXmlFile, 128

assertXmlStringEqualsXmlFile, 128

assertXmlStringEqualsXmlString, 128

at($num), 131

atLeastOnce(), 131

auth-access, 137

C

CAPTCHA, 4, 115, 117, 118, 119

class Database, 58, 65

Coding-to-the-Interface, 8

Controller, 77

D

Dependency Injection, 129

Design-by-Contract, 8

Displaying Startup Errors, 68

DOM Manipulation, 8

Dynamic Binding, 3, 28

E

Eclipse, 3, 5, 14, 15, 16, 33, 55, 132, 133, 135, 162

Eclipse for PHP Developers Version: Helios Release, 14

Effects & Animations, 8

encapsulation, 18, 23, 26

Entity Relationship Diagram, 90

Error Reporting Sensitivity, 67

Error Sensitivity, 67

error_reporting, 75

Error-Reporting Sensitivity Levels, 67

exactly($num), 131

Exception Class, 4, 64

Exception Handling, 4, 64

extends, 22, 23, 24, 27, 28, 30, 31, 40, 41, 42, 44, 46, 47, 48, 49, 53, 54, 61, 62, 64, 71, 72, 73, 77, 85, 91, 96, 98, 105, 123, 124, 125, 126, 127,

130, 131

Extreme Programming, 8

 161

F

final, 3, 41, 42, 46, 47, 54, 64, 72, 105, 106

FollowSymLinks, 77

G

getCode, 64

getFile, 64

getLine, 64

getPrevious, 64

getTrace, 64

getTraceAsString, 64

go-pear, 111, 114, 115

H

Horizontal Inheritance, 3, 25

I

Identifying the Log File, 68

Ignoring Errors Originating from the Same Location, 68

Ignoring Repeated Errors, 68

implements, 3, 33, 44, 45, 47, 48, 49, 50, 54, 72, 105, 106

index.php, 78

inheritance, 18, 22, 23, 25, 26, 30, 39, 42, 44, 48, 49, 61

ini_set, 67, 75, 78, 86, 93, 98, 101

Instantiation, 3, 20

interface, 3, 13, 26, 27, 39, 44, 45, 46, 47, 48, 49, 50, 54, 55, 72, 73, 94, 96, 109, 121, 131, 138, 146, 151, 160

Invoking parent methods, 24

J

JQuery

Core Functionality, 8

DOM Selection, 8

Extensibility through Plug-ins, 8

User Interface, 8

L

LAMP, 10

Late Binding, 3, 28

Linux, 4, 5, 10, 11, 14, 68, 115, 122, 135, 152

LOG_ALERT, 70

LOG_CRIT, 70

LOG_DEBUG, 70

LOG_EMERG, 70

LOG_ERR, 70

LOG_INFO, 70

LOG_NOTICE, 70

LOG_WARNING, 70

Logging Errors, 68

Logging Options, 69

M

Mac OS, 4, 5, 11, 114, 122, 135, 146, 151

MAMP, 10

Method overloading, 26

Method Overriding, 3, 23, 26, 41

Mocks, 5, 129

Model, 4, 70, 77, 86, 91, 99, 160

MVC Folder Structure, 78

MVC URL Structure, 77

 162

MySQL Workbench 5.2 CE, 3, 13, 14, 57, 58, 162

N

never(), 131

new keyword, 20

O

Once(), 131

P

password-db, 137

PEAR, 4, 9, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 162

PHP Extension and Application Repository, 111

php.ini, 13, 67, 112, 113, 114, 115, 122

PHPUnit, 4, 5, 9, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 160, 162

polymorphism and then elaborate on them., 18

preg_replace, 82, 83

Private, 21

Protected, 21

Public, 21, 61, 62

R

ReflectionClass, 104, 105, 106

repository, 111, 135, 136, 137, 139, 141, 144, 146, 147, 148, 149, 150, 151, 152, 154, 155, 157

RewriteEngine, 77

S

Scope Resolution OperatorScope Resolution OperatorScope Resolution OperatorScope Resolution Operator, 4, 52

Setting the Maximum Log Line Length, 68

Singleton, 60

static, 3, 4, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 65, 71, 72, 79, 84, 94, 105, 106

Storing Most Recent Error in a Variable, 69

Stubs, 5, 129

Subversion, 5, 9, 135, 136, 137, 138, 139, 141, 146, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 162

SVN, 5, 9, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 152, 160

Adding Files, 4, 5, 135, 139, 143, 147, 148, 155

branches, 141

Branching, 5, 135, 145, 150, 157

Committing, 5, 139, 148, 154

Exporting, 5, 135, 145, 149, 156

Graphical User Interfaces, 5, 151

Removing Files, 5, 135, 148, 149, 155, 156

Tagging, 5, 145, 149, 156

tags, 141, 148, 149, 153, 154, 156, 157

trunk, 139, 141, 148, 149, 150, 151, 153, 154, 156, 157, 158

Updating, 5, 139, 148, 154

svnserve.exe, 137

T

Templates, 92, 94, 100, 162

Test Driven Development, 8

Test fixtures, 4, 122

Test Phases, 5, 123

the Logging Connection, 69

TortoiseSVN, 5, 135, 139, 140, 141, 142, 143, 144, 145, 162

Traits, 3, 25

U

URL Mapping, 77

 163

W

WAMP, 10

Web Server Port, 11

Writing Test Cases, 5, 123

X

XAMP, 10

Z

Zend Framework, 4, 111, 121, 160

Zend Server

System Requirements, 10

Zend Server Interface Port, 11

Zend\phpMyAdmin\config.inc, 13

